LMest: an R package for latent Markov models for categorical longitudinal data

Latent Markov (LM) models represent an important class of models for the analysis of longitudinal data (Bartolucci et. al., 2013), especially when response variables are categorical. These models have a great potential of application for the analysis of social, medical, and behavioral data as well a...

Full description

Saved in:  
Bibliographic Details
Main Author: Bartolucci, Francesco (Author)
Contributors: Pennoni, Fulvia ; Pandolfi, Silvia ; Farcomeni, Alessio
Format: Electronic Book
Language:English
Published: 2015
In:Year: 2015
Online Access: Volltext (kostenfrei)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000nam a22000002 4500
001 1866134876
003 DE-627
005 20231018043652.0
007 cr uuu---uuuuu
008 231018s2015 xx |||||o 00| ||eng c
035 |a (DE-627)1866134876 
035 |a (DE-599)KXP1866134876 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Bartolucci, Francesco  |e VerfasserIn  |4 aut 
109 |a Bartolucci, Francesco 
245 1 0 |a LMest: an R package for latent Markov models for categorical longitudinal data 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Latent Markov (LM) models represent an important class of models for the analysis of longitudinal data (Bartolucci et. al., 2013), especially when response variables are categorical. These models have a great potential of application for the analysis of social, medical, and behavioral data as well as in other disciplines. We propose the R package LMest, which is tailored to deal with these types of model. In particular, we consider a general framework for extended LM models by including individual covariates and by formulating a mixed approach to take into account additional dependence structures in the data. Such extensions lead to a very flexible class of models, which allows us to fit different types of longitudinal data. Model parameters are estimated through the expectation-maximization algorithm, based on the forward-backward recursions, which is implemented in the main functions of the package. The package also allows us to perform local and global decoding and to obtain standard errors for the parameter estimates. We illustrate its use and the most important features on the basis of examples involving applications in health and criminology 
650 4 |a Research 
700 1 |a Pennoni, Fulvia  |e VerfasserIn  |4 aut 
700 1 |a Pandolfi, Silvia  |e VerfasserIn  |4 aut 
700 1 |a Farcomeni, Alessio  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1501.04448  |x Verlag  |z kostenfrei  |3 Volltext 
912 |a NOMM 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 439181563X 
LOK |0 003 DE-627 
LOK |0 004 1866134876 
LOK |0 005 20231018043652 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE18038856 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw