Group-Based Trajectory Modeling of Citations in Scholarly Literature: Dynamic Qualities of "Transient" and "Sticky Knowledge Claims"

Group-based Trajectory Modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (Virology, 24 journals), in order to distinguish among the developmental trajectories in subpopulations. Can highly-cited citation patterns be di...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Baumgartner, Susanne (VerfasserIn)
Beteiligte: Leydesdorff, Loet
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2013
In:Jahr: 2013
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000cam a22000002c 4500
001 1866134442
003 DE-627
005 20250121054858.0
007 cr uuu---uuuuu
008 231018s2013 xx |||||o 00| ||eng c
035 |a (DE-627)1866134442 
035 |a (DE-599)KXP1866134442 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Baumgartner, Susanne  |e VerfasserIn  |4 aut 
245 1 0 |a Group-Based Trajectory Modeling of Citations in Scholarly Literature: Dynamic Qualities of "Transient" and "Sticky Knowledge Claims" 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Group-based Trajectory Modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (Virology, 24 journals), in order to distinguish among the developmental trajectories in subpopulations. Can highly-cited citation patterns be distinguished in an early phase as "fast-breaking" papers? Can "late bloomers" or "sleeping beauties" be identified? Most interesting, we find differences between "sticky knowledge claims" that continue to be cited more than ten years after publication, and "transient knowledge claims" that show a decay pattern after reaching a peak within a few years. Only papers following the trajectory of a "sticky knowledge claim" can be expected to have a sustained impact. These findings raise questions about indicators of "excellence" that use aggregated citation rates after two or three years (e.g., impact factors). Because aggregated citation curves can also be composites of the two patterns, 5th-order polynomials (with four bending points) are needed to capture citation curves precisely. For the journals under study, the most frequently cited groups were furthermore much smaller than ten percent. Although GBTM has proved a useful method for investigating differences among citation trajectories, the methodology does not enable us to define a percentage of highly-cited papers inductively across different fields and journals. Using multinomial logistic regression, we conclude that predictor variables such as journal names, number of authors, etc., do not affect the stickiness of knowledge claims in terms of citations, but only the levels of aggregated citations (that are field-specific).Comment: Journal of the American Society for Information Science and Technology (2013, in press 
650 4 |a Research 
700 1 |a Leydesdorff, Loet  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1303.4366  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391815206 
LOK |0 003 DE-627 
LOK |0 004 1866134442 
LOK |0 005 20231018043651 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE17046764 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw