Crime Mapping from Satellite Imagery via Deep Learning

Ensuring urban safety is an essential part of developing sustainable cities. An urban safety map can assist cities to prevent future crimes. However, mapping is costly in terms of both time and money due to the need for manual data collection. On the other hand, satellite imagery is becoming increas...

Full description

Saved in:  
Bibliographic Details
Main Author: Kaneko, Shun'ichi (Author)
Contributors: Najjar, Alameen ; Miyanaga, Yoshikazu
Format: Electronic Book
Language:English
Published: 2018
In:Year: 2018
Online Access: Volltext (kostenfrei)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000nam a22000002 4500
001 1866133624
003 DE-627
005 20231018043650.0
007 cr uuu---uuuuu
008 231018s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1866133624 
035 |a (DE-599)KXP1866133624 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Kaneko, Shun'ichi  |e VerfasserIn  |4 aut 
245 1 0 |a Crime Mapping from Satellite Imagery via Deep Learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Ensuring urban safety is an essential part of developing sustainable cities. An urban safety map can assist cities to prevent future crimes. However, mapping is costly in terms of both time and money due to the need for manual data collection. On the other hand, satellite imagery is becoming increasingly abundant and accessible with higher resolution. Given the outstanding success deep learning has achieved in the field of computer vision and pattern recognition over the past 5 years, in this paper we attempt to investigate the use of deep learning to predict crime rate directly from raw satellite imagery. To this end, we have trained a deep Convolutional Neural Network on satellite images obtained from over one million crime-incident reports collected by the Chicago Police Department. The best performing model predicted crime rate from raw satellite imagery with an accuracy of 79%. To test their reusability, we used the learned Chicago models to predict for the cities of Denver and San Francisco city-scale maps indicating crime rate in three different levels. Compared to maps made from years' worth of data collected by the corresponding police departments, our maps have an accuracy of 72% and 70%, respectively.Comment: Accepted in IEEE WACV 201 
650 4 |a Research 
700 1 |a Najjar, Alameen  |e VerfasserIn  |4 aut 
700 1 |a Miyanaga, Yoshikazu  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1812.06764  |x Verlag  |z kostenfrei  |3 Volltext 
912 |a NOMM 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391814382 
LOK |0 003 DE-627 
LOK |0 004 1866133624 
LOK |0 005 20231018043650 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE54181617 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw