The Truth and Nothing but the Truth: Multimodal Analysis for Deception Detection

We propose a data-driven method for automatic deception detection in real-life trial data using visual and verbal cues. Using OpenFace with facial action unit recognition, we analyze the movement of facial features of the witness when posed with questions and the acoustic patterns using OpenSmile. W...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Bajpai, Rajiv (Autor)
Otros Autores: Tabibu, Sairam ; Jaiswal, Mimansa
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2019
En:Año: 2019
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:
Descripción
Sumario:We propose a data-driven method for automatic deception detection in real-life trial data using visual and verbal cues. Using OpenFace with facial action unit recognition, we analyze the movement of facial features of the witness when posed with questions and the acoustic patterns using OpenSmile. We then perform a lexical analysis on the spoken words, emphasizing the use of pauses and utterance breaks, feeding that to a Support Vector Machine to test deceit or truth prediction. We then try out a method to incorporate utterance-based fusion of visual and lexical analysis, using string based matching.Comment: 6pages, ICDM
DOI:10.1109/icdmw.2016.0137