Modeling Rape Reporting Delays Using Spatial, Temporal and Social Features

We present a novel approach to estimate the delay observed between the occurrence and reporting of rape crimes. We explore spatial, temporal and social effects in sparse aggregated (area-level) and high-dimensional disaggregated (event-level) data for New York and Los Angeles. Focusing on inference,...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Jarvis, Stephen A. (Autor)
Otros Autores: Neill, Daniel B. ; Klemmer, Konstantin
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2018
En:Año: 2018
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 1866132784
003 DE-627
005 20250114054904.0
007 cr uuu---uuuuu
008 231018s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1866132784 
035 |a (DE-599)KXP1866132784 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Jarvis, Stephen A.  |e VerfasserIn  |4 aut 
245 1 0 |a Modeling Rape Reporting Delays Using Spatial, Temporal and Social Features 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We present a novel approach to estimate the delay observed between the occurrence and reporting of rape crimes. We explore spatial, temporal and social effects in sparse aggregated (area-level) and high-dimensional disaggregated (event-level) data for New York and Los Angeles. Focusing on inference, we apply Gradient Boosting and Random Forests to assess predictor importance, as well as Gaussian Processes to model spatial disparities in reporting times. Our results highlight differences and similarities between the two cities. We identify at-risk populations and communities which may be targeted with focused policies and interventions to support rape victims, apprehend perpetrators, and prevent future crimes.Comment: Workshop on Modeling and Decision-Making in the Spatiotemporal Domain, 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Canad 
650 4 |a Research 
700 1 |a Neill, Daniel B.  |e VerfasserIn  |4 aut 
700 1 |a Klemmer, Konstantin  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1811.03939  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391813548 
LOK |0 003 DE-627 
LOK |0 004 1866132784 
LOK |0 005 20231018043649 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE54168264 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw