Statistical Inference After Model Selection

Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence in...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Berk, Richard A (Autor)
Otros Autores: Zhao, Linda ; Brown, Lawrence D
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2010
En:Año: 2010
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866132210
003 DE-627
005 20250123054846.0
007 cr uuu---uuuuu
008 231018s2010 xx |||||o 00| ||eng c
035 |a (DE-627)1866132210 
035 |a (DE-599)KXP1866132210 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Berk, Richard A  |e VerfasserIn  |4 aut 
245 1 0 |a Statistical Inference After Model Selection 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence intervals computed for a “final” model. In this paper, we examine such practices and show how they are typically misguided. The parameters being estimated are no longer well defined, and post-model-selection sampling distributions are mixtures with properties that are very different from what is conventionally assumed. Confidence intervals and statistical tests do not perform as they should. We examine in some detail the specific mechanisms responsible. We also offer some suggestions for better practice and show though a criminal justice example using real data how proper statistical inference in principle may be obtained 
700 1 |a Zhao, Linda  |e VerfasserIn  |4 aut 
700 1 |a Brown, Lawrence D  |e VerfasserIn  |4 aut 
856 4 0 |u https://core.ac.uk/download/132271952.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391812975 
LOK |0 003 DE-627 
LOK |0 004 1866132210 
LOK |0 005 20231018043648 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE19082096 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw