|
|
|
|
LEADER |
00000cam a22000002c 4500 |
001 |
1866128515 |
003 |
DE-627 |
005 |
20250113054859.0 |
007 |
cr uuu---uuuuu |
008 |
231018s2021 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)1866128515
|
035 |
|
|
|a (DE-599)KXP1866128515
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rda
|
041 |
|
|
|a eng
|
084 |
|
|
|a 2,1
|2 ssgn
|
100 |
1 |
|
|a Asgari-Chenaghlu, Meysam
|e VerfasserIn
|4 aut
|
245 |
1 |
0 |
|a Automatic Personality Prediction; an Enhanced Method Using Ensemble Modeling
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP
|
700 |
1 |
|
|a Zafarani-Moattar, Elnaz
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Ranjbar-Khadivi, Mehrdad
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Ramezani, Majid
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Rahkar-Farshi, Taymaz
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Nikzad-Khasmakhi, Narjes
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Jahanbakhsh-Nagadeh, Zoleikha
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Feizi-Derakhshi, Mohammad-Reza
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Feizi-Derakhshi, Ali-Reza
|e VerfasserIn
|4 aut
|
700 |
1 |
|
|a Balafar, Mohammad-Ali
|e VerfasserIn
|4 aut
|
856 |
4 |
0 |
|u http://arxiv.org/abs/2007.04571
|x Verlag
|z kostenfrei
|3 Volltext
|
935 |
|
|
|a mkri
|
951 |
|
|
|a BO
|
ELC |
|
|
|a 1
|
LOK |
|
|
|0 000 xxxxxcx a22 zn 4500
|
LOK |
|
|
|0 001 4391809273
|
LOK |
|
|
|0 003 DE-627
|
LOK |
|
|
|0 004 1866128515
|
LOK |
|
|
|0 005 20231018043642
|
LOK |
|
|
|0 008 231018||||||||||||||||ger|||||||
|
LOK |
|
|
|0 035
|a (DE-2619)CORE86626729
|
LOK |
|
|
|0 040
|a DE-2619
|c DE-627
|d DE-2619
|
LOK |
|
|
|0 092
|o n
|
LOK |
|
|
|0 852
|a DE-2619
|
LOK |
|
|
|0 852 1
|9 00
|
LOK |
|
|
|0 935
|a core
|
OAS |
|
|
|a 1
|
ORI |
|
|
|a SA-MARC-krimdoka001.raw
|