Automatic Personality Prediction; an Enhanced Method Using Ensemble Modeling

Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Genera...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Asgari-Chenaghlu, Meysam (Autor)
Otros Autores: Zafarani-Moattar, Elnaz ; Ranjbar-Khadivi, Mehrdad ; Ramezani, Majid ; Rahkar-Farshi, Taymaz ; Nikzad-Khasmakhi, Narjes ; Jahanbakhsh-Nagadeh, Zoleikha ; Feizi-Derakhshi, Mohammad-Reza ; Feizi-Derakhshi, Ali-Reza ; Balafar, Mohammad-Ali
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2021
En:Año: 2021
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866128515
003 DE-627
005 20250113054859.0
007 cr uuu---uuuuu
008 231018s2021 xx |||||o 00| ||eng c
035 |a (DE-627)1866128515 
035 |a (DE-599)KXP1866128515 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Asgari-Chenaghlu, Meysam  |e VerfasserIn  |4 aut 
245 1 0 |a Automatic Personality Prediction; an Enhanced Method Using Ensemble Modeling 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Human personality is significantly represented by those words which he/she uses in his/her speech or writing. As a consequence of spreading the information infrastructures (specifically the Internet and social media), human communications have reformed notably from face to face communication. Generally, Automatic Personality Prediction (or Perception) (APP) is the automated forecasting of the personality on different types of human generated/exchanged contents (like text, speech, image, video, etc.). The major objective of this study is to enhance the accuracy of APP from the text. To this end, we suggest five new APP methods including term frequency vector-based, ontology-based, enriched ontology-based, latent semantic analysis (LSA)-based, and deep learning-based (BiLSTM) methods. These methods as the base ones, contribute to each other to enhance the APP accuracy through ensemble modeling (stacking) based on a hierarchical attention network (HAN) as the meta-model. The results show that ensemble modeling enhances the accuracy of APP 
700 1 |a Zafarani-Moattar, Elnaz  |e VerfasserIn  |4 aut 
700 1 |a Ranjbar-Khadivi, Mehrdad  |e VerfasserIn  |4 aut 
700 1 |a Ramezani, Majid  |e VerfasserIn  |4 aut 
700 1 |a Rahkar-Farshi, Taymaz  |e VerfasserIn  |4 aut 
700 1 |a Nikzad-Khasmakhi, Narjes  |e VerfasserIn  |4 aut 
700 1 |a Jahanbakhsh-Nagadeh, Zoleikha  |e VerfasserIn  |4 aut 
700 1 |a Feizi-Derakhshi, Mohammad-Reza  |e VerfasserIn  |4 aut 
700 1 |a Feizi-Derakhshi, Ali-Reza  |e VerfasserIn  |4 aut 
700 1 |a Balafar, Mohammad-Ali  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2007.04571  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391809273 
LOK |0 003 DE-627 
LOK |0 004 1866128515 
LOK |0 005 20231018043642 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE86626729 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw