Considerations for developing predictive models of crime and new methods for measuring their accuracy

Developing spatio-temporal crime prediction models, and to a lesser extent, developing measures of accuracy and operational efficiency for them, has been an active area of research for almost two decades. Despite calls for rigorous and independent evaluations of model performance, such studies have...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Curtis-Ham, Sophie (VerfasserIn)
Beteiligte: Searle, Deane ; Joshi, Chaitanya ; D'Ath, Clayton
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 186612255X
003 DE-627
005 20250113054858.0
007 cr uuu---uuuuu
008 231018s2020 xx |||||o 00| ||eng c
035 |a (DE-627)186612255X 
035 |a (DE-599)KXP186612255X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Curtis-Ham, Sophie  |e VerfasserIn  |4 aut 
245 1 0 |a Considerations for developing predictive models of crime and new methods for measuring their accuracy 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Developing spatio-temporal crime prediction models, and to a lesser extent, developing measures of accuracy and operational efficiency for them, has been an active area of research for almost two decades. Despite calls for rigorous and independent evaluations of model performance, such studies have been few and far between. In this paper, we argue that studies should focus not on finding the one predictive model or the one measure that is the most appropriate at all times, but instead on careful consideration of several factors that affect the choice of the model and the choice of the measure, to find the best measure and the best model for the problem at hand. We argue that because each problem is unique, it is important to develop measures that empower the practitioner with the ability to input the choices and preferences that are most appropriate for the problem at hand. We develop a new measure called the penalized predictive accuracy index (PPAI) which imparts such flexibility. We also propose the use of the expected utility function to combine multiple measures in a way that is appropriate for a given problem in order to assess the models against multiple criteria. We further propose the use of the average logarithmic score (ALS) measure that is appropriate for many crime models and measures accuracy differently than existing measures. These measures can be used alongside existing measures to provide a more comprehensive means of assessing the accuracy and potential utility of spatio-temporal crime prediction models 
700 1 |a Searle, Deane  |e VerfasserIn  |4 aut 
700 1 |a Joshi, Chaitanya  |e VerfasserIn  |4 aut 
700 1 |a D'Ath, Clayton  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2006.08008  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391803313 
LOK |0 003 DE-627 
LOK |0 004 186612255X 
LOK |0 005 20231018043632 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE86299117 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw