A Complex Networks Approach to Find Latent Clusters of Terrorist Groups

Given the extreme heterogeneity of actors and groups participating in terrorist actions, investigating and assessing their characteristics can be important to extract relevant information and enhance the knowledge on their behaviors. The present work will seek to achieve this goal via a complex netw...

Full description

Saved in:  
Bibliographic Details
Main Author: Campedelli, Gian Maria (Author)
Contributors: Cruickshank, Iain ; Carley, Kathleen M.
Format: Electronic Book
Language:English
Published: 2020
In:Year: 2020
Online Access: Volltext (kostenfrei)
Volltext (kostenfrei)
Check availability: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1866122525
003 DE-627
005 20250113054858.0
007 cr uuu---uuuuu
008 231018s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/s41109-019-0184-6  |2 doi 
035 |a (DE-627)1866122525 
035 |a (DE-599)KXP1866122525 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Campedelli, Gian Maria  |e VerfasserIn  |4 aut 
109 |a Campedelli, Gian Maria 
245 1 2 |a A Complex Networks Approach to Find Latent Clusters of Terrorist Groups 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Given the extreme heterogeneity of actors and groups participating in terrorist actions, investigating and assessing their characteristics can be important to extract relevant information and enhance the knowledge on their behaviors. The present work will seek to achieve this goal via a complex networks approach. This approach will allow finding latent clusters of similar terror groups using information on their operational characteristics. Specifically, using open access data of terrorist attacks occurred worldwide from 1997 to 2016, we build a multi-partite network that includes terrorist groups and related information on tactics, weapons, targets, active regions. We propose a novel algorithm for cluster formation that expands our earlier work that solely used Gower's coefficient of similarity via the application of Von Neumann entropy for mode-weighting. This novel approach is compared with our previous Gower-based method and a heuristic clustering technique that only focuses on groups' ideologies. The comparative analysis demonstrates that the entropy-based approach tends to reliably reflect the structure of the data that naturally emerges from the baseline Gower-based method. Additionally, it provides interesting results in terms of behavioral and ideological characteristics of terrorist groups. We furthermore show that the ideology-based procedure tends to distort or hide existing patterns. Among the main statistical results, our work reveals that groups belonging to opposite ideologies can share very common behaviors and that Islamist/jihadist groups hold peculiar behavioral characteristics with respect to the others. Limitations and potential work directions are also discussed, introducing the idea of a dynamic entropy-based framework.Comment: 24 pages, 8 figure 
700 1 |a Cruickshank, Iain  |e VerfasserIn  |4 aut 
700 1 |a Carley, Kathleen M.  |e VerfasserIn  |4 aut 
856 |u https://appliednetsci.springeropen.com/track/pdf/10.1007/s41109-019-0184-6  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [oa journal (via doaj)] 
856 4 0 |u http://arxiv.org/abs/2001.03367  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1007/s41109-019-0184-6  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4391803283 
LOK |0 003 DE-627 
LOK |0 004 1866122525 
LOK |0 005 20231018043632 
LOK |0 008 231018||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89601089 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw