Do I Look Like a Criminal? Examining how Race Presentation Impacts Human Judgement of Recidivism

Understanding how racial information impacts human decision making in online systems is critical in today's world. Prior work revealed that race information of criminal defendants, when presented as a text field, had no significant impact on users' judgements of recidivism. We replicated a...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Inkpen, Kori (VerfasserIn)
Beteiligte: Tan, Sarah ; Ramesh, Divya ; Mallari, Keri ; Kamar, Ece ; Johns, Paul
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2020
In:Jahr: 2020
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1865851701
003 DE-627
005 20250113054856.0
007 cr uuu---uuuuu
008 231017s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1865851701 
035 |a (DE-599)KXP1865851701 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Inkpen, Kori  |e VerfasserIn  |4 aut 
245 1 0 |a Do I Look Like a Criminal? Examining how Race Presentation Impacts Human Judgement of Recidivism 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Understanding how racial information impacts human decision making in online systems is critical in today's world. Prior work revealed that race information of criminal defendants, when presented as a text field, had no significant impact on users' judgements of recidivism. We replicated and extended this work to explore how and when race information influences users' judgements, with respect to the saliency of presentation. Our results showed that adding photos to the race labels had a significant impact on recidivism predictions for users who identified as female, but not for those who identified as male. The race of the defendant also impacted these results, with black defendants being less likely to be predicted to recidivate compared to white defendants. These results have strong implications for how system-designers choose to display race information, and cautions researchers to be aware of gender and race effects when using Amazon Mechanical Turk workers.Comment: This paper has been accepted for publication at CHI202 
700 1 |a Tan, Sarah  |e VerfasserIn  |4 aut 
700 1 |a Ramesh, Divya  |e VerfasserIn  |4 aut 
700 1 |a Mallari, Keri  |e VerfasserIn  |4 aut 
700 1 |a Kamar, Ece  |e VerfasserIn  |4 aut 
700 1 |a Johns, Paul  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2002.01111  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390890107 
LOK |0 003 DE-627 
LOK |0 004 1865851701 
LOK |0 005 20231017043740 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE89607910 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw