Stationary patterns and their selection mechanism of Urban crime models with heterogeneous near-repeat victimization effect

In this paper, we study two PDEs that generalize the urban crime model proposed by Short \emph{et al}. [Math. Models Methods Appl. Sci., 18 (2008), pp. 1249-1267]. Our modifications are made under assumption of the spatial heterogeneity of both the near-repeat victimization effect and the dispersal...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Gu, Yu (Autor)
Otros Autores: Yi, Guangzeng ; Wang, Qi
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2016
En:Año: 2016
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 1865845981
003 DE-627
005 20250115054859.0
007 cr uuu---uuuuu
008 231017s2016 xx |||||o 00| ||eng c
024 7 |a 10.1017/s0956792516000206  |2 doi 
035 |a (DE-627)1865845981 
035 |a (DE-599)KXP1865845981 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Gu, Yu  |e VerfasserIn  |4 aut 
245 1 0 |a Stationary patterns and their selection mechanism of Urban crime models with heterogeneous near-repeat victimization effect 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In this paper, we study two PDEs that generalize the urban crime model proposed by Short \emph{et al}. [Math. Models Methods Appl. Sci., 18 (2008), pp. 1249-1267]. Our modifications are made under assumption of the spatial heterogeneity of both the near-repeat victimization effect and the dispersal strategy of criminal agents. We investigate pattern formations in the reaction-advection-diffusion systems with nonlinear diffusion over multi-dimensional bounded domains subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as the intrinsic near-repeat victimization rate $\epsilon$ decreases and spatially nonconstant solutions emerge through bifurcation. Moreover, we find the wavemode selection mechanism through rigorous stability analysis of these nontrivial patterns, which shows that the only stable pattern must have wavenumber that maximizes the bifurcation value. Based on this wavemode selection mechanism, we will be able to precisely predict the formation of stable aggregates of the house attractiveness and criminal population density, at least when the diffusion rate $\epsilon$ is around the principal bifurcation value. Our theoretical results also suggest that large domains support more stable aggregates than small domains. Finally, we perform extensive numerical simulations over 1D intervals and 2D squares to illustrate and verify our theoretical findings. Our numerics also include some interesting phenomena such as the merging of two interior spikes and the emerging of new spikes, etc. These nontrivial solutions can model the well observed aggregation phenomenon in urban criminal activities 
650 4 |a Research 
700 1 |a Yi, Guangzeng  |e VerfasserIn  |4 aut 
700 1 |a Wang, Qi  |e VerfasserIn  |4 aut 
856 |u https://arxiv.org/pdf/1409.0835  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h repository [oa repository (via OAI-PMH doi match)] 
856 4 0 |u http://arxiv.org/abs/1409.0835  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1017/s0956792516000206  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390884387 
LOK |0 003 DE-627 
LOK |0 004 1865845981 
LOK |0 005 20231017043724 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE17222235 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw