Crime prediction through urban metrics and statistical learning

Understanding the causes of crime is a longstanding issue in researcher's agenda. While it is a hard task to extract causality from data, several linear models have been proposed to predict crime through the existing correlations between crime and urban metrics. However, because of non-Gaussian...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Alves, Luiz G A (Autor)
Otros Autores: Rodrigues, Francisco A ; Ribeiro, Haroldo V
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2018
En: Physica. A, Statistical mechanics and its applications
Año: 2018
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1865845124
003 DE-627
005 20250114054859.0
007 cr uuu---uuuuu
008 231017s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.physa.2018.03.084  |2 doi 
035 |a (DE-627)1865845124 
035 |a (DE-599)KXP1865845124 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Alves, Luiz G A  |e VerfasserIn  |4 aut 
245 1 0 |a Crime prediction through urban metrics and statistical learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Understanding the causes of crime is a longstanding issue in researcher's agenda. While it is a hard task to extract causality from data, several linear models have been proposed to predict crime through the existing correlations between crime and urban metrics. However, because of non-Gaussian distributions and multicollinearity in urban indicators, it is common to find controversial conclusions about the influence of some urban indicators on crime. Machine learning ensemble-based algorithms can handle well such problems. Here, we use a random forest regressor to predict crime and quantify the influence of urban indicators on homicides. Our approach can have up to 97% of accuracy on crime prediction, and the importance of urban indicators is ranked and clustered in groups of equal influence, which are robust under slightly changes in the data sample analyzed. Our results determine the rank of importance of urban indicators to predict crime, unveiling that unemployment and illiteracy are the most important variables for describing homicides in Brazilian cities. We further believe that our approach helps in producing more robust conclusions regarding the effects of urban indicators on crime, having potential applications for guiding public policies for crime control.Comment: Accepted for publication in Physica 
650 4 |a Mathematics 
650 4 |a Research 
700 1 |a Rodrigues, Francisco A  |e VerfasserIn  |4 aut 
700 1 |a Ribeiro, Haroldo V  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Physica. A, Statistical mechanics and its applications  |d Amsterdam : North Holland Publ. Co., 1975  |g (2018)  |h Online-Ressource  |w (DE-627)266015077  |w (DE-600)1466577-3  |w (DE-576)074959832  |x 1873-2119  |7 nnas 
773 1 8 |g year:2018 
856 |u https://arxiv.org/pdf/1712.03834  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h repository [oa repository (via OAI-PMH doi match)] 
856 4 0 |u http://arxiv.org/abs/1712.03834  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://doi.org/10.1016/j.physa.2018.03.084  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390883526 
LOK |0 003 DE-627 
LOK |0 004 1865845124 
LOK |0 005 20231017043723 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE45959129 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw