Machine Learning for Survival Analysis: A Survey

Accurately predicting the time of occurrence of an event of interest is a critical problem in longitudinal data analysis. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experien...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Li, Yan (VerfasserIn)
Beteiligte: Wang, Ping ; Reddy, Chandan K.
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2017
In:Jahr: 2017
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000cam a22000002c 4500
001 1865844691
003 DE-627
005 20250115054858.0
007 cr uuu---uuuuu
008 231017s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1865844691 
035 |a (DE-599)KXP1865844691 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Li, Yan  |e VerfasserIn  |4 aut 
245 1 0 |a Machine Learning for Survival Analysis: A Survey 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Accurately predicting the time of occurrence of an event of interest is a critical problem in longitudinal data analysis. One of the main challenges in this context is the presence of instances whose event outcomes become unobservable after a certain time point or when some instances do not experience any event during the monitoring period. Such a phenomenon is called censoring which can be effectively handled using survival analysis techniques. Traditionally, statistical approaches have been widely developed in the literature to overcome this censoring issue. In addition, many machine learning algorithms are adapted to effectively handle survival data and tackle other challenging problems that arise in real-world data. In this survey, we provide a comprehensive and structured review of the representative statistical methods along with the machine learning techniques used in survival analysis and provide a detailed taxonomy of the existing methods. We also discuss several topics that are closely related to survival analysis and illustrate several successful applications in various real-world application domains. We hope that this paper will provide a more thorough understanding of the recent advances in survival analysis and offer some guidelines on applying these approaches to solve new problems that arise in applications with censored data 
650 4 |a Research 
700 1 |a Wang, Ping  |e VerfasserIn  |4 aut 
700 1 |a Reddy, Chandan K.  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1708.04649  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390883097 
LOK |0 003 DE-627 
LOK |0 004 1865844691 
LOK |0 005 20231017043722 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE43888902 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw