Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald

Haavelmo (1944) proposed a probabilistic structure for econometric modeling, aiming to make econometrics useful for decision making. His fundamental contribution has become thoroughly embedded in subsequent econometric research, yet it could not answer all the deep issues that the author raised. Not...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Manski, Charles F. 1948- (VerfasserIn)
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2021
In:Jahr: 2021
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway

MARC

LEADER 00000cam a22000002c 4500
001 1865843245
003 DE-627
005 20250115001620.0
007 cr uuu---uuuuu
008 231017s2021 xx |||||o 00| ||eng c
035 |a (DE-627)1865843245 
035 |a (DE-599)KXP1865843245 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Manski, Charles F.  |d 1948-  |e VerfasserIn  |0 (DE-588)128388447  |0 (DE-627)372632564  |0 (DE-576)297116711  |4 aut 
109 |a Manski, Charles F. 1948-  |a Manski, C. F. 1948-  |a Manski, Chuck 1948- 
245 1 0 |a Econometrics For Decision Making: Building Foundations Sketched By Haavelmo And Wald 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Haavelmo (1944) proposed a probabilistic structure for econometric modeling, aiming to make econometrics useful for decision making. His fundamental contribution has become thoroughly embedded in subsequent econometric research, yet it could not answer all the deep issues that the author raised. Notably, Haavelmo struggled to formalize the implications for decision making of the fact that models can at most approximate actuality. In the same period, Wald (1939, 1945) initiated his own seminal development of statistical decision theory. Haavelmo favorably cited Wald, but econometrics did not embrace statistical decision theory. Instead, it focused on study of identification, estimation, and statistical inference. This paper proposes statistical decision theory as a framework for evaluation of the performance of models in decision making. I particularly consider the common practice of as-if optimization: specification of a model, point estimation of its parameters, and use of the point estimate to make a decision that would be optimal if the estimate were accurate. A central theme is that one should evaluate as-if optimization or any other model-based decision rule by its performance across the state space, listing all states of nature that one believes feasible, not across the model space. I apply the theme to prediction and treatment choice. Statistical decision theory is conceptually simple, but application is often challenging. Advancement of computation is the primary task to continue building the foundations sketched by Haavelmo and Wald.Comment: arXiv admin note: substantial text overlap with arXiv:1909.0685 
856 4 0 |u http://arxiv.org/abs/1912.08726  |x Verlag  |z kostenfrei  |3 Volltext 
883 |8 1  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390881647 
LOK |0 003 DE-627 
LOK |0 004 1865843245 
LOK |0 005 20231017043720 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE86732654 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw