Bayesian models in geographic profiling

We consider the problem of geographic profiling and offer an approach to choosing a suitable model for each offender. Based on the analysis of the examined dataset, we divide offenders into several types with similar behavior. According to the spatial distribution of the offender's crime sites,...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Svobodová, Jana (Autor)
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2018
En:Año: 2018
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 1865839442
003 DE-627
005 20250114054858.0
007 cr uuu---uuuuu
008 231017s2018 xx |||||o 00| ||eng c
035 |a (DE-627)1865839442 
035 |a (DE-599)KXP1865839442 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Svobodová, Jana  |e VerfasserIn  |4 aut 
245 1 0 |a Bayesian models in geographic profiling 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We consider the problem of geographic profiling and offer an approach to choosing a suitable model for each offender. Based on the analysis of the examined dataset, we divide offenders into several types with similar behavior. According to the spatial distribution of the offender's crime sites, each new criminal is assigned to the corresponding group. Then we choose an appropriate model for the offender and using Bayesian methods we determine the posterior distribution for the criminal's anchor point. Our models include directionality, similar to models of Mohler and Short (2012). Our approach also provides a way to incorporate two possible situations into the model - when the criminal is a resident or a non-resident. We test this methodology on a real data set of offenders from Baltimore County and compare the results with Rossmo's approach. Our approach leads to substantial improvement over Rossmo's method, especially in the presence of non-residents 
650 4 |a slides 
856 4 0 |u http://arxiv.org/abs/1805.02993  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390877844 
LOK |0 003 DE-627 
LOK |0 004 1865839442 
LOK |0 005 20231017043715 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE51392862 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw