Using Deep Learning and Satellite Imagery to Quantify the Impact of the Built Environment on Neighborhood Crime Rates

The built environment has been postulated to have an impact on neighborhood crime rates, however, measures of the built environment can be subjective and differ across studies leading to varying observations on its association with crime rates. Here, we illustrate an accurate and straightforward app...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Maharana, Adyasha (Autor)
Otros Autores: Nsoesie, Elaine O. ; Nguyen, Quynh C.
Tipo de documento: Electrónico Libro
Lenguaje:Inglés
Publicado: 2017
En:Año: 2017
Acceso en línea: Volltext (kostenfrei)
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000cam a22000002c 4500
001 186583940X
003 DE-627
005 20250115054857.0
007 cr uuu---uuuuu
008 231017s2017 xx |||||o 00| ||eng c
035 |a (DE-627)186583940X 
035 |a (DE-599)KXP186583940X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Maharana, Adyasha  |e VerfasserIn  |4 aut 
245 1 0 |a Using Deep Learning and Satellite Imagery to Quantify the Impact of the Built Environment on Neighborhood Crime Rates 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The built environment has been postulated to have an impact on neighborhood crime rates, however, measures of the built environment can be subjective and differ across studies leading to varying observations on its association with crime rates. Here, we illustrate an accurate and straightforward approach to quantify the impact of the built environment on neighborhood crime rates from high-resolution satellite imagery. Using geo-referenced crime reports and satellite images for three United States cities, we demonstrate how image features consistently identified using a convolutional neural network can explain up to 82% of the variation in neighborhood crime rates. Our results suggest the built environment is a strong predictor of crime rates, and this can lead to structural interventions shown to reduce crime incidence in urban settings 
650 4 |a slides 
700 1 |a Nsoesie, Elaine O.  |e VerfasserIn  |4 aut 
700 1 |a Nguyen, Quynh C.  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1710.05483  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390877801 
LOK |0 003 DE-627 
LOK |0 004 186583940X 
LOK |0 005 20231017043714 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE45145105 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw