Traveling Wave Solutions in a Reaction-Diffusion Model for Criminal Activity

We study a reaction-diffusion system of partial differential equations, which can be taken to be a basic model for criminal activity. We show that the assumption of a populations natural tendency towards crime significantly changes the long-time behavior of criminal activity patterns. Under the righ...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
VerfasserInnen: Berestycki, Henri (VerfasserIn) ; Ryzhik, Lenya (VerfasserIn) ; Rodriguez, Nancy (VerfasserIn)
Medienart: Elektronisch Buch
Sprache:Englisch
Veröffentlicht: 2013
In:Jahr: 2013
Online-Zugang: Volltext (kostenfrei)
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000cam a22000002c 4500
001 1865809055
003 DE-627
005 20250121054847.0
007 cr uuu---uuuuu
008 231017s2013 xx |||||o 00| ||eng c
035 |a (DE-627)1865809055 
035 |a (DE-599)KXP1865809055 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Berestycki, Henri  |e VerfasserIn  |4 aut 
245 1 0 |a Traveling Wave Solutions in a Reaction-Diffusion Model for Criminal Activity 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We study a reaction-diffusion system of partial differential equations, which can be taken to be a basic model for criminal activity. We show that the assumption of a populations natural tendency towards crime significantly changes the long-time behavior of criminal activity patterns. Under the right assumptions on these natural tendencies we first show that there exists traveling wave solutions connecting zones with no criminal activity and zones with high criminal activity, known as hotspots. This corresponds to an invasion of criminal activity onto all space. Second, we study the problem of preventing such invasions by employing a finite number of resources that reduce the payoff committing a crime in a finite region. We make the concept of wave propagation mathematically rigorous in this situation by proving the existence of entire solutions that approach traveling waves as time approaches negative infinity. Furthermore, we characterize the minimum amount of resources necessary to prevent the invasion in the case when prevention is possible. Finally, we apply our theory to what is commonly known as the gap problem in the excitable media literature, proving existing conjectures in the literature 
650 4 |a Research 
700 1 |a Ryzhik, Lenya  |e VerfasserIn  |4 aut 
700 1 |a Rodriguez, Nancy  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/1302.4333  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390847457 
LOK |0 003 DE-627 
LOK |0 004 1865809055 
LOK |0 005 20231017043626 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE17041297 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw