Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation

We consider a class of macroscopic models for the spatio-temporal evolution of urban crime, as originally going back to Short et al. (Math. Mod. Meth. Appl. Sci. 18, 2008). The focus here is on the question how far a certain nonlinear enhancement in the random diffusion of criminal agents may exert...

Full description

Saved in:  
Bibliographic Details
Authors: Rodriguez, Nancy (Author) ; Winkler, Michael (Author)
Format: Electronic Book
Language:English
Published: 2020
In:Year: 2020
Online Access: Volltext (kostenfrei)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000cam a22000002c 4500
001 1865807583
003 DE-627
005 20250113054845.0
007 cr uuu---uuuuu
008 231017s2020 xx |||||o 00| ||eng c
035 |a (DE-627)1865807583 
035 |a (DE-599)KXP1865807583 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Rodriguez, Nancy  |e VerfasserIn  |4 aut 
109 |a Rodriguez, Nancy 
245 1 0 |a Relaxation by nonlinear diffusion enhancement in a two-dimensional cross-diffusion model for urban crime propagation 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We consider a class of macroscopic models for the spatio-temporal evolution of urban crime, as originally going back to Short et al. (Math. Mod. Meth. Appl. Sci. 18, 2008). The focus here is on the question how far a certain nonlinear enhancement in the random diffusion of criminal agents may exert visible relaxation effects. Specifically, in the context of the system \begin{eqnarray*} \left\{ \begin{array}{l} u_t = \nabla \cdot (u^{m-1} \nabla u) - \chi \nabla \cdot \Big(\frac{u}{v} \nabla v \Big) - uv + B_1(x,t), \\[1mm] v_t = \Delta v +uv - v + B_2(x,t), \end{array} \right. \end{eqnarray*} it is shown that whenever $\chi>0$ and the given nonnegative source terms $B_1$ and $B_2$ are sufficiently regular, the assumption \begin{eqnarray*} m>\frac{3}{2} \end{eqnarray*} is sufficient to ensure that a corresponding Neumann-type initial-boundary value problem, posed in a smoothly bounded planar convex domain, admits locally bounded solutions for a wide class of arbitrary initial data. Furthermore, this solution is seen to be globally bounded if both $B_1$ and $B_2$ are bounded and $\liminf_{t\to\infty} \int_\Omega B_2(\cdot,t)$ is positive. This is supplemented by numerical evidence which, besides illustrating associated smoothing effects in particular situations of sharply structured initial data in the presence of such porous medium type diffusion mechanisms, indicates a significant tendency toward support of singular structures in the linear diffusion case $m=1$.Comment: 29 pages, 12 figure 
650 4 |a Research 
700 1 |a Winkler, Michael  |e VerfasserIn  |4 aut 
856 4 0 |u http://arxiv.org/abs/2005.07725  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4390845985 
LOK |0 003 DE-627 
LOK |0 004 1865807583 
LOK |0 005 20231017043624 
LOK |0 008 231017||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)CORE85806016 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a core 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw