Crime Hot Spot Forecasting with Data from the Pittsburgh (Pennsylvania) Bureau of Police, 1990-1998

This study used crime count data from the Pittsburgh, Pennsylvania, Bureau of Police offense reports and 911 computer-aided dispatch (CAD) calls to determine the best univariate forecast method for crime and to evaluate the value of leading indicator crime forecast models. The researchers used the r...

Full description

Saved in:  
Bibliographic Details
Main Author: Gorr, Wilpen L. (Author)
Contributors: Olligschlaeger, Andreas (Contributor)
Format: Electronic Research Data
Language:English
Published: [Erscheinungsort nicht ermittelbar] [Verlag nicht ermittelbar] 2015
In:Year: 2015
Online Access: Volltext (kostenfrei)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000cam a22000002c 4500
001 1840045590
003 DE-627
005 20230325055043.0
007 cr uuu---uuuuu
008 230324s2015 xx |||||o 00| ||eng c
024 7 |a 10.3886/ICPSR03469.v1  |2 doi 
035 |a (DE-627)1840045590 
035 |a (DE-599)KXP1840045590 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Gorr, Wilpen L.  |e VerfasserIn  |4 aut 
245 1 0 |a Crime Hot Spot Forecasting with Data from the Pittsburgh (Pennsylvania) Bureau of Police, 1990-1998 
264 1 |a [Erscheinungsort nicht ermittelbar]  |b [Verlag nicht ermittelbar]  |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This study used crime count data from the Pittsburgh, Pennsylvania, Bureau of Police offense reports and 911 computer-aided dispatch (CAD) calls to determine the best univariate forecast method for crime and to evaluate the value of leading indicator crime forecast models. The researchers used the rolling-horizon experimental design, a design that maximizes the number of forecasts for a given time series at different times and under different conditions. Under this design, several forecast models are used to make alternative forecasts in parallel. For each forecast model included in an experiment, the researchers estimated models on training data, forecasted one month ahead to new data not previously seen by the model, and calculated and saved the forecast error. Then they added the observed value of the previously forecasted data point to the next month's training data, dropped the oldest historical data point, and forecasted the following month's data point. This process continued over a number of months. A total of 15 statistical datasets and 3 geographic information systems (GIS) shapefiles resulted from this study. The statistical datasets consist of <ul> <li>Univariate Forecast Data by Police Precinct (Dataset 1) with 3,240 cases</li> <li>Output Data from the Univariate Forecasting Program: Sectors and Forecast Errors (Dataset 2) with 17,892 cases</li> <li>Multivariate, Leading Indicator Forecast Data by Grid Cell (Dataset 3) with 5,940 cases</li> <li>Output Data from the 911 Drug Calls Forecast Program (Dataset 4) with 5,112 cases</li> <li>Output Data from the Part One Property Crimes Forecast Program (Dataset 5) with 5,112 cases</li> <li>Output Data from the Part One Violent Crimes Forecast Program (Dataset 6) with 5,112 cases</li> <li>Input Data for the Regression Forecast Program for 911 Drug Calls (Dataset 7) with 10,011 cases</li> <li>Input Data for the Regression Forecast Program for Part One Property Crimes (Dataset 8) with 10,011 cases</li> <li>Input Data for the Regression Forecast Program for Part One Violent Crimes (Dataset 9) with 10,011 cases </li> <li>Output Data from Regression Forecast Program for 911 Drug Calls: Estimated Coefficients for Leading Indicator Models (Dataset 10) with 36 cases </li> <li>Output Data from Regression Forecast Program for Part One Property Crimes: Estimated Coefficients for Leading Indicator Models (Dataset 11) with 36 cases </li> <li>Output Data from Regression Forecast Program for Part One Violent Crimes: Estimated Coefficients for Leading Indicator Models (Dataset 12) with 36 cases </li> <li>Output Data from Regression Forecast Program for 911 Drug Calls: Forecast Errors (Dataset 13) with 4,936 cases </li> <li>Output Data from Regression Forecast Program for Part One Property Crimes: Forecast Errors (Dataset 14) with 4,936 cases </li> <li>Output Data from Regression Forecast Program for Part One Violent Crimes: Forecast Errors (Dataset 15) with 4,936 cases. </li> <li>The GIS Shapefiles (Dataset 16) are provided with the study in a single zip file: Included are polygon data for the 4,000 foot, square, uniform grid system used for much of the Pittsburgh crime data (grid400); polygon data for the 6 police precincts, alternatively called districts or zones, of Pittsburgh(policedist); and polygon data for the 3 major rivers in Pittsburgh the Allegheny, Monongahela, and Ohio (rivers). </li></ul> 
540 |a ICPSR Terms of Use 
650 4 |a Crime 
650 4 |a Crime Mapping 
650 4 |a crime patterns 
650 4 |a forecasting models 
650 4 |a geographic distribution 
650 4 |a Geographic information systems 
650 4 |a Mapping 
650 4 |a Police Effectiveness 
650 4 |a police records 
650 4 |a Prediction 
650 4 |a Trends 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
700 1 |a Olligschlaeger, Andreas  |e MitwirkendeR  |4 ctb 
856 4 0 |u https://doi.org/10.3886/ICPSR03469.v1  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4296792946 
LOK |0 003 DE-627 
LOK |0 004 1840045590 
LOK |0 005 20230324125152 
LOK |0 008 230324||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)ICPSR3469 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a foda  |a nacj 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw