Dynamic, Graph-Based Risk Assessments for the Detection of Violent Extremist Radicalization Trajectories Using Large Scale Social and Behavioral Data, United States, Canada, United Kingdom, Germany, 1994-2020

This project examines the trajectory of radicalization of jihadists and Incels with two broad objectives in mind. First, to develop new integrated computational technology that can mine, monitor, and screen for the occurrence of behaviors associated with dangerously escalating extremism in large het...

Full description

Saved in:  
Bibliographic Details
Main Author: Jayasumana, Anura P. (Author)
Contributors: Klausen, Jytte (Contributor)
Format: Electronic Research Data
Language:English
Published: [Erscheinungsort nicht ermittelbar] [Verlag nicht ermittelbar] 2022
In:Year: 2022
Online Access: Volltext (kostenfrei)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000cam a22000002c 4500
001 1840037385
003 DE-627
005 20230325054939.0
007 cr uuu---uuuuu
008 230324s2022 xx |||||o 00| ||eng c
024 7 |a 10.3886/ICPSR38135.v1  |2 doi 
035 |a (DE-627)1840037385 
035 |a (DE-599)KXP1840037385 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Jayasumana, Anura P.  |e VerfasserIn  |4 aut 
109 |a Jayasumana, Anura P. 
245 1 0 |a Dynamic, Graph-Based Risk Assessments for the Detection of Violent Extremist Radicalization Trajectories Using Large Scale Social and Behavioral Data, United States, Canada, United Kingdom, Germany, 1994-2020 
264 1 |a [Erscheinungsort nicht ermittelbar]  |b [Verlag nicht ermittelbar]  |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This project examines the trajectory of radicalization of jihadists and Incels with two broad objectives in mind. First, to develop new integrated computational technology that can mine, monitor, and screen for the occurrence of behaviors associated with dangerously escalating extremism in large heterogenous databases and provide early warnings of individuals or groups on behavioral trajectories toward extremist violence. Second, to harness data science methodologies to enable rapid, semi-automated support for law enforcement analysts and social science researchers to produce structured behavioral indicator profiles from text sources. The study operated from the premise that being that violent extremists are a rare, complex phenomenon, it is futile to search for a profile of extremism. Rather, it is better to focus on explaining how people come to embrace violent extremism. This path, referred to here as a radicalization trajectory, implies that an arc exists leading the perpetrator from entertaining extremist ideas to action, and that there is a somewhat predictable pathway from a normal, if perhaps angry state, to the perpetration of a violent attack in the name of the ideology. Two teams were combined to analyze radicalization trajectories: data collection and analysis led by Brandeis University and technology development led by Colorado State University (CSU). The questions revolving around the technological development were as follows: Can tools that rigorously examine and account for the activities of close associates better predict the likelihood that an individual would engage in violent extremism? Which risk assessment indicators for violent extremism in the extant literature are detectable via automated or semi-automated technologies, and what databases and datasets must be integrated to facilitate this detection? Can computationally efficient tools be used to mine these databases for the specific purposes of monitoring and screening for individuals and small groups posing a significant risk for violence? <strong>Users should refer to the data collection notes field below for additional information about study citation.</strong> 
540 |a ICPSR Terms of Use 
650 4 |a Feminism 
650 4 |a incels 
650 4 |a Radicalism 
650 4 |a Terrorism 
650 4 |a Violence 
655 7 |a Forschungsdaten  |0 (DE-588)1098579690  |0 (DE-627)857755366  |0 (DE-576)469182156  |2 gnd-content 
700 1 |a Klausen, Jytte  |e MitwirkendeR  |4 ctb 
856 4 0 |u https://doi.org/10.3886/ICPSR38135.v1  |x Resolving-System  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a BO 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4296784617 
LOK |0 003 DE-627 
LOK |0 004 1840037385 
LOK |0 005 20230324125113 
LOK |0 008 230324||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)ICPSR38135 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a foda  |a nacj 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw