Network analysis for financial crime risk assessment: the case study of the gambling division in Malta4hMaria Jofre

The present study aims to support existing risk assessment tools by proposing an innovative network-oriented methodology based on ownership information. The approach involves calculating company-level indicators that are then transformed into red flags and used to rate risk. To this end, we collect...

Full description

Saved in:  
Bibliographic Details
Main Author: Jofre, Maria (Author)
Format: Electronic Article
Language:English
Published: 2022
In: Global crime
Year: 2022, Volume: 23, Issue: 2, Pages: 148-170
Online Access: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000caa a22000002c 4500
001 1837027811
003 DE-627
005 20250225105017.0
007 cr uuu---uuuuu
008 230217s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/17440572.2022.2077330  |2 doi 
035 |a (DE-627)1837027811 
035 |a (DE-599)KXP1837027811 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Jofre, Maria  |e VerfasserIn  |0 (orcid)0000-0001-6682-4668  |4 aut 
245 1 0 |a Network analysis for financial crime risk assessment: the case study of the gambling division in Malta4hMaria Jofre 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The present study aims to support existing risk assessment tools by proposing an innovative network-oriented methodology based on ownership information. The approach involves calculating company-level indicators that are then transformed into red flags and used to rate risk. To this end, we collect data on companies active in the division of gambling and betting activities in Malta, and further combine them with information on enforcement actions imposed on Maltese companies, their beneficial owners, intermediate shareholders and subsidiaries. Correlation analysis and statistical testing were performed to assess the individual relevance of company-level indicators, while machine learning methods were employed to validate the usefulness of the indicators when used collectively. We conclude that the intelligent use of ownership information and proper analysis of ownership networks greatly supports the detection of firms involved in financial crime, hence the recommendation to adopt akin approaches to improve risk assessment strategies. 
650 4 |a Financial Crime 
650 4 |a Machine Learning 
650 4 |a Network Analysis 
650 4 |a Ownership structure 
650 4 |a red flags 
650 4 |a Risk assessment 
773 0 8 |i Enthalten in  |t Global crime  |d London [u.a.] : Taylor & Francis, 2004  |g 23(2022), 2, Seite 148-170  |h Online-Ressource  |w (DE-627)477987338  |w (DE-600)2174455-5  |w (DE-576)258360380  |x 1744-0580  |7 nnas 
773 1 8 |g volume:23  |g year:2022  |g number:2  |g pages:148-170 
856 4 0 |u https://doi.org/10.1080/17440572.2022.2077330  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.tandfonline.com/doi/full/10.1080/17440572.2022.2077330  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4273981742 
LOK |0 003 DE-627 
LOK |0 004 1837027811 
LOK |0 005 20230815113715 
LOK |0 008 230217||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krzo 
ORI |a WA-MARC-krimdoka001.raw