The Development and Validation of a Classification System Predicting Severe and Frequent Prison Misconduct

This study presents the results from the development and validation of a fully automated, gender-specific risk assessment system designed to predict severe and frequent prison misconduct on a recurring, semiannual basis. K-fold and split-population methods were applied to train and test the predicti...

Full description

Saved in:  
Bibliographic Details
Main Author: Duwe, Grant 1971- (Author)
Format: Electronic Article
Language:English
Published: 2020
In: The prison journal
Year: 2020, Volume: 100, Issue: 2, Pages: 173-200
Online Access: Volltext (lizenzpflichtig)
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000naa a22000002c 4500
001 1800218281
003 DE-627
005 20220425151639.0
007 cr uuu---uuuuu
008 220425s2020 xx |||||o 00| ||eng c
024 7 |a 10.1177/0032885519894587  |2 doi 
035 |a (DE-627)1800218281 
035 |a (DE-599)KXP1800218281 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Duwe, Grant  |d 1971-  |e VerfasserIn  |0 (DE-588)1115828142  |0 (DE-627)870064460  |0 (DE-576)266816266  |4 aut 
109 |a Duwe, Grant 1971- 
245 1 4 |a The Development and Validation of a Classification System Predicting Severe and Frequent Prison Misconduct 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This study presents the results from the development and validation of a fully automated, gender-specific risk assessment system designed to predict severe and frequent prison misconduct on a recurring, semiannual basis. K-fold and split-population methods were applied to train and test the predictive models. Regularized logistic regression was the classifier used on the training and test sets that contained 35,506 males and 3,849 females who were released from Minnesota prisons between 2006 and 2011. Using multiple metrics, the results showed the models achieved a relatively high level of predictive performance. For example, the average area under the curve (AUC) was 0.832 for the female prisoner models and 0.836 for the male prisoner models. The findings provide support for the notion that better predictive performance can be obtained by developing assessments that are customized to the population on which they will be used. 
650 4 |a Classification 
650 4 |a Misconduct 
650 4 |a Prediction 
650 4 |a Prison 
650 4 |a Risk assessment 
773 0 8 |i Enthalten in  |t The prison journal  |d London : Sage, 1921  |g 100(2020), 2, Seite 173-200  |h Online-Ressource  |w (DE-627)324534272  |w (DE-600)2028491-3  |w (DE-576)096930292  |x 1552-7522  |7 nnas 
773 1 8 |g volume:100  |g year:2020  |g number:2  |g pages:173-200 
856 4 0 |u https://dx.doi.org/10.1177/0032885519894587  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4120698084 
LOK |0 003 DE-627 
LOK |0 004 1800218281 
LOK |0 005 20220425151558 
LOK |0 008 220425||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krub  |a krzo 
ORI |a SA-MARC-krimdoka001.raw