A Model for Predicting the Class of Illicit Drug Suspects and Offenders

In this study, the artificial neural network was deployed to develop a classification model for predicting the class of a drug-related suspect into either the drug peddler or non-drug peddler class. A dataset consisting of 262 observations on drug suspects and offenders in central Nigeria was used t...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Atsa'am, Donald D. (Autor)
Otros Autores: Balogun, Oluwafemi S. ; Agjei, Richard O. ; Devine, Samuel N. O. ; Akingbade, Toluwalase J. ; Omotehinwa, Temidayo O.
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2022
En: Journal of drug issues
Año: 2022, Volumen: 52, Número: 2, Páginas: 168-181
Acceso en línea: Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1795543809
003 DE-627
005 20230426163632.0
007 cr uuu---uuuuu
008 220315s2022 xx |||||o 00| ||eng c
024 7 |a 10.1177/00220426211049358  |2 doi 
035 |a (DE-627)1795543809 
035 |a (DE-599)KXP1795543809 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Atsa'am, Donald D.  |e VerfasserIn  |4 aut 
245 1 2 |a A Model for Predicting the Class of Illicit Drug Suspects and Offenders 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In this study, the artificial neural network was deployed to develop a classification model for predicting the class of a drug-related suspect into either the drug peddler or non-drug peddler class. A dataset consisting of 262 observations on drug suspects and offenders in central Nigeria was used to train the model which uses parameters such as exhibit type, suspect’s age, exhibit weight, and suspect’s gender to predict the class of a suspect, with a predictive accuracy of 83%. The model sets the pace for the implementation of a full system for use at airports, seaports, police stations, and by security agents concerned with drug-related matters. The accurate classification of suspects and offenders will ensure a faster and correct reference to the sections of the drug law that correspond to a particular offence for appropriate actions such as prosecution or rehabilitation. 
650 4 |a Artificial neural network 
650 4 |a Classification model 
650 4 |a Suspect classification 
650 4 |a Drug Trafficking 
650 4 |a Drug use 
700 1 |a Balogun, Oluwafemi S.  |e VerfasserIn  |4 aut 
700 1 |a Agjei, Richard O.  |e VerfasserIn  |4 aut 
700 1 |a Devine, Samuel N. O.  |e VerfasserIn  |4 aut 
700 1 |a Akingbade, Toluwalase J.  |e VerfasserIn  |4 aut 
700 1 |a Omotehinwa, Temidayo O.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of drug issues  |d Thousand Oaks, Calif. : Sage, 1971  |g 52(2022), 2, Seite 168-181  |h Online-Ressource  |w (DE-627)331258277  |w (DE-600)2051257-0  |w (DE-576)260774243  |x 1945-1369  |7 nnas 
773 1 8 |g volume:52  |g year:2022  |g number:2  |g pages:168-181 
856 4 0 |u https://doi.org/10.1177/00220426211049358  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4089007232 
LOK |0 003 DE-627 
LOK |0 004 1795543809 
LOK |0 005 20220315051545 
LOK |0 008 220315||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2022-03-12#B0272388F0B6C77D32641E3C0CE09EC9170CEF68 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw