Evaluating and comparing profiles of burglaries developed using three statistical classification techniques: cluster analysis, multidimensional scaling, and latent class analysis

While there are a variety of statistical classification techniques available, the most prominent in the behavioral sciences are Cluster Analysis (CA), Multidimensional Scaling (MDS), and Latent Class Analysis (LCA). Researchers often rely on person-oriented statistical classification techniques to i...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Fox, Bryanna (VerfasserIn)
Beteiligte: Escue, Melanie
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2022
In: Psychology, crime & law
Jahr: 2022, Band: 28, Heft: 1, Seiten: 34-58
Online-Zugang: Volltext (lizenzpflichtig)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000caa a22000002 4500
001 1783529512
003 DE-627
005 20211224235908.0
007 cr uuu---uuuuu
008 211223s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/1068316X.2021.1880582  |2 doi 
035 |a (DE-627)1783529512 
035 |a (DE-599)KXP1783529512 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Fox, Bryanna  |e VerfasserIn  |0 (DE-588)1208512145  |0 (DE-627)1694814645  |4 aut 
109 |a Fox, Bryanna  |a Fox, Bryanna Hahn  |a Hahn, Bryanna Fox  |a Fox, Bryanna H. 
245 1 0 |a Evaluating and comparing profiles of burglaries developed using three statistical classification techniques: cluster analysis, multidimensional scaling, and latent class analysis 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a While there are a variety of statistical classification techniques available, the most prominent in the behavioral sciences are Cluster Analysis (CA), Multidimensional Scaling (MDS), and Latent Class Analysis (LCA). Researchers often rely on person-oriented statistical classification techniques to identify and understand the latent heterogeneity in the complex individuals that we study. Using data on 405 randomly selected solved burglaries committed in Florida, this study is the first to conduct a head-to-head comparison of the benefits and weakness of each analysis and evaluate the resultant typologies and predictive validity when all three analyses are applied to the same dataset. Findings suggest that the number and nature of resultant subtypes differ depending on the statistical classification technique employed. We conclude that LCA is superior to MDS and CA due to its ability to objectively evaluate model fit and handle missing data, balance of parsimony and complexity in the results, and reliability and accuracy stemming from the first test of predictive validity among the three statistical classification techniques. Implications for future research and the application and testing of statistical classification techniques are also discussed. 
650 4 |a Typologies 
650 4 |a multidimensional scaling 
650 4 |a Latent Class Analysis 
650 4 |a Cluster Analysis 
650 4 |a classification techniques 
650 4 |a Burglary 
700 1 |a Escue, Melanie  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Psychology, crime & law  |d Getzville, NY : HeinOnline, 1994  |g 28(2022), 1, Seite 34-58  |h Online-Ressource  |w (DE-627)341903574  |w (DE-600)2070124-X  |w (DE-576)27234995X  |x 1477-2744  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:1  |g pages:34-58 
856 4 0 |u https://doi.org/10.1080/1068316X.2021.1880582  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 4026371573 
LOK |0 003 DE-627 
LOK |0 004 1783529512 
LOK |0 005 20211223061534 
LOK |0 008 211223||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-12-22#3910094A1A92927E72FBCCD9E853C65E0BEA95DA 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw