Accounting for Meso- or Micro-Level Effects When Estimating Models Using City-Level Crime Data: Introducing a Novel Imputation Technique
Objectives Criminological scholars have long been interested in how macro-level characteristics of cities, counties, or metropolitan areas are related to levels of crime. The standard analytic approach in this literature aggregates constructs of interest, including crime rates, to the macro geograph...
Autor principal: | |
---|---|
Otros Autores: | |
Tipo de documento: | Electrónico Artículo |
Lenguaje: | Inglés |
Publicado: |
2021
|
En: |
Journal of quantitative criminology
Año: 2021, Volumen: 37, Número: 4, Páginas: 915-951 |
Acceso en línea: |
Volltext (lizenzpflichtig) Volltext (lizenzpflichtig) |
Journals Online & Print: | |
Verificar disponibilidad: | HBZ Gateway |
Palabras clave: |
MARC
LEADER | 00000caa a22000002c 4500 | ||
---|---|---|---|
001 | 1776231392 | ||
003 | DE-627 | ||
005 | 20250323033129.0 | ||
007 | cr uuu---uuuuu | ||
008 | 211105s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-020-09473-7 |2 doi | |
035 | |a (DE-627)1776231392 | ||
035 | |a (DE-599)KXP1776231392 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |8 1\p |a Hipp, John R. |e VerfasserIn |0 (DE-588)1122056427 |0 (DE-627)875133169 |0 (DE-576)261424122 |4 aut | |
109 | |a Hipp, John R. |a Hipp, John | ||
245 | 1 | 0 | |a Accounting for Meso- or Micro-Level Effects When Estimating Models Using City-Level Crime Data: Introducing a Novel Imputation Technique |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Objectives Criminological scholars have long been interested in how macro-level characteristics of cities, counties, or metropolitan areas are related to levels of crime. The standard analytic approach in this literature aggregates constructs of interest, including crime rates, to the macro geographic units and estimates regression models, but this strategy ignores possible sub-city-level processes that occur simultaneously. Methods One solution uses multilevel data of crime in meso-level units within a large number of cities; however, such data is very difficult and time intensive to collect. We propose an alternative approach which utilizes insights from existing literature on meso-level processes along with meso-level socio-demographic measures in cities to impute crime data from the city to the smaller geographic units. This strategy allows researchers to estimate full multilevel models that estimate the effects of macro-level processes while controlling for sub-city-level factors. Results We demonstrate that the strategy works as expected on a sample of 91 cities with meso-level data, and also works well when estimating the multilevel model on a sample of cities different from the imputation model, or even in a different time period. Conclusions The results demonstrate that existing studies aggregated to macro units can yield considerably different (and therefore potentially problematic) results when failing to account for meso-level processes. | ||
650 | 4 | |a Imputation | |
650 | 4 | |a Macro criminology | |
650 | 4 | |a Cities | |
650 | 4 | |a Neighborhoods | |
700 | 1 | |8 2\p |a Williams, Seth |e VerfasserIn |0 (DE-588)1323169024 |0 (DE-627)1883150841 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 37(2021), 4, Seite 915-951 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnas |
773 | 1 | 8 | |g volume:37 |g year:2021 |g number:4 |g pages:915-951 |
856 | 4 | 0 | |u https://doi.org/10.1007/s10940-020-09473-7 |x Resolving-System |z lizenzpflichtig |3 Volltext |
856 | 4 | 0 | |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-020-09473-7 |x Verlag |z lizenzpflichtig |3 Volltext |
883 | |8 1 |a cgwrk |d 20241001 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
883 | |8 2 |a cgwrk |d 20250301 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3999222328 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1776231392 | ||
LOK | |0 005 20211105061703 | ||
LOK | |0 008 211105||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2021-11-04#35E758B10E9C36CF3102B9A569652EBA34FE155B | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
ORI | |a SA-MARC-krimdoka001.raw |