A Comparison of Logistic Regression, Classification and Regression Tree, and Neural Networks Models in Predicting Violent Re-Offending

Previous studies that have compared logistic regression (LR), classification and regression tree (CART), and neural networks (NNs) models for their predictive validity have shown inconsistent results in demonstrating superiority of any one model. The three models were tested in a prospective sample...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Liu, Yuan Y. (Autor)
Otros Autores: Yang, Mingshi 1660-1736 ; Ramsay, Malcolm ; Li, Xiao S. ; Coid, Jeremy W.
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2011
En: Journal of quantitative criminology
Año: 2011, Volumen: 27, Número: 4, Páginas: 547-573
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 1767143419
003 DE-627
005 20210817235959.0
007 cr uuu---uuuuu
008 210817s2011 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-011-9137-7  |2 doi 
035 |a (DE-627)1767143419 
035 |a (DE-599)KXP1767143419 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Liu, Yuan Y.  |e VerfasserIn  |4 aut 
245 1 2 |a A Comparison of Logistic Regression, Classification and Regression Tree, and Neural Networks Models in Predicting Violent Re-Offending 
264 1 |c 2011 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Previous studies that have compared logistic regression (LR), classification and regression tree (CART), and neural networks (NNs) models for their predictive validity have shown inconsistent results in demonstrating superiority of any one model. The three models were tested in a prospective sample of 1225 UK male prisoners followed up for a mean of 3.31 years after release. Items in a widely-used risk assessment instrument (the Historical, Clinical, Risk Management-20, or HCR-20) were used as predictors and violent reconvictions as outcome. Multi-validation procedure was used to reduce sampling error in reporting the predictive accuracy. The low base rate was controlled by using different measures in the three models to minimize prediction error and achieve a more balanced classification. Overall accuracy of the three models varied between 0.59 and 0.67, with an overall AUC range of 0.65–0.72. Although the performance of NNs was slightly better than that of LR and CART models, it did not demonstrate a significant improvement. 
650 4 |a HCR-20 
650 4 |a Classification and regression tree 
650 4 |a Neural networks 
650 4 |a Risk Assessment 
650 4 |a Violence reconviction 
700 1 |a Yang, Mingshi  |d 1660-1736  |e VerfasserIn  |0 (DE-588)1236363027  |0 (DE-627)1761718258  |4 aut 
700 1 |a Ramsay, Malcolm  |e VerfasserIn  |4 aut 
700 1 |a Li, Xiao S.  |e VerfasserIn  |4 aut 
700 1 |a Coid, Jeremy W.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 27(2011), 4, Seite 547-573  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:27  |g year:2011  |g number:4  |g pages:547-573 
856 4 0 |u https://doi.org/10.1007/s10940-011-9137-7  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-011-9137-7  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3969411408 
LOK |0 003 DE-627 
LOK |0 004 1767143419 
LOK |0 005 20210817061637 
LOK |0 008 210817||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-08-16#718B32246B8ACA0554E90879A3A1F0546BD1EA57 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw