Using ARIMA models to predict prison populations

In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box-Jenkins modeling methodologyidentification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential sm...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Lin, Bin-Shan (Autor)
Otros Autores: MacKenzie, Doris Layton ; Gulledge, Thomas R.
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 1986
En: Journal of quantitative criminology
Año: 1986, Volumen: 2, Número: 3, Páginas: 251-264
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 1767143079
003 DE-627
005 20210817061636.0
007 cr uuu---uuuuu
008 210817s1986 xx |||||o 00| ||eng c
024 7 |a 10.1007/BF01066529  |2 doi 
035 |a (DE-627)1767143079 
035 |a (DE-599)KXP1767143079 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Lin, Bin-Shan  |e VerfasserIn  |4 aut 
245 1 0 |a Using ARIMA models to predict prison populations 
264 1 |c 1986 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a In this study a time-series model for predicting Louisiana's prison population was developed using the iterative Box-Jenkins modeling methodologyidentification, estimation, and diagnostic checking. The time-series forecasts were contrasted with results of regression models and an exponential smoothing model. The results indicate that the time-series model is the superior model as indicated by the usual measures of predictive accuracy. When compared with actual data the predictions appeared sufficiently adequate to meet the needs of the correctional system for short-term planning. 
650 4 |a Time series 
650 4 |a Box-Jenkins modeling 
650 4 |a Prediction 
650 4 |a Overcrowding 
650 4 |a Prison Population 
650 4 |a Forecasting 
650 4 |a ARIMA models 
700 1 |a MacKenzie, Doris Layton  |e VerfasserIn  |4 aut 
700 1 |a Gulledge, Thomas R.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 2(1986), 3, Seite 251-264  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:2  |g year:1986  |g number:3  |g pages:251-264 
856 4 0 |u https://doi.org/10.1007/BF01066529  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/pdf?id=doi:10.1007/BF01066529  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3969411033 
LOK |0 003 DE-627 
LOK |0 004 1767143079 
LOK |0 005 20210817061636 
LOK |0 008 210817||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-08-16#1633FAC237E942378F43A75B3455429822E01546 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw