On The Application of Fuzzy Clustering for Crime Hot Spot Detection

One of the fundamental challenges in crime mapping and analysis is pattern recognition. Efforts and methods to detect crime hot-spots, or geographic areas of elevated criminal activity, are wide ranging. For aggregate data, such as total crime events in a census tract(s), measures of spatial autocor...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Grubesic, Tony H. (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2006
En: Journal of quantitative criminology
Año: 2006, Volumen: 22, Número: 1, Páginas: 77-105
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1764280083
003 DE-627
005 20250323030922.0
007 cr uuu---uuuuu
008 210725s2006 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-005-9003-6  |2 doi 
035 |a (DE-627)1764280083 
035 |a (DE-599)KXP1764280083 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Grubesic, Tony H.  |e VerfasserIn  |0 (DE-588)1037494016  |0 (DE-627)755837886  |0 (DE-576)391532006  |4 aut 
109 |a Grubesic, Tony H.  |a Grubesic, Tony 
245 1 0 |a On The Application of Fuzzy Clustering for Crime Hot Spot Detection 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a One of the fundamental challenges in crime mapping and analysis is pattern recognition. Efforts and methods to detect crime hot-spots, or geographic areas of elevated criminal activity, are wide ranging. For aggregate data, such as total crime events in a census tract(s), measures of spatial autocorrelation have proven useful. For disaggregate data (i.e. individual crime events), kernel density smoothing and non-hierarchical cluster analysis (e.g. k -means), are widely used. Non-hierarchical techniques are particularly effective in delineating geographic space into areas of higher or lower crime concentrations, because each observation is assigned to one and only one cluster. The resulting set of partitions provides clear-cut spatial boundaries that can be used for hot-spot evaluation and interpretation. However, the strength of non-hierarchical methods can also be viewed as a weakness. Although the hard-clustering of observations into a set of discrete clusters is helpful, there are many cases where ambiguity exists in the data. In such cases, a more generalized approach for hot-spot detection would be helpful. The purpose of this paper is to explore the use of a generalized partitioning method known as fuzzy clustering for hot-spot detection. Functional and visual comparisons of fuzzy clustering and two hard-clustering approaches (medoid and k -means), across a range of cluster values are analyzed. The empirical results suggest that a fuzzy clustering approach is better equipped to handle intermediate cases and spatial outliers. 
650 4 |a geographic information system (GIS) 
650 4 |a Spatial Analysis 
650 4 |a Cluster Analysis 
650 4 |a Crime 
650 4 |a hot-spot detection 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 22(2006), 1, Seite 77-105  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:22  |g year:2006  |g number:1  |g pages:77-105 
856 4 0 |u https://doi.org/10.1007/s10940-005-9003-6  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-005-9003-6  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957454220 
LOK |0 003 DE-627 
LOK |0 004 1764280083 
LOK |0 005 20210725061653 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#1480E4ED7722DFEDE123E6AD7EABE1B465FCC12F 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw