Analyzing Criminal Trajectory Profiles: Bridging Multilevel and Group-based Approaches Using Growth Mixture Modeling

Over the last 25 years, a life-course perspective on criminal behavior has assumed increasing prominence in the literature. This theoretical development has been accompanied by changes in the statistical models used to analyze criminological data. There are two main statistical modeling techniques c...

Full description

Saved in:  
Bibliographic Details
Main Author: Kreuter, Frauke (Author)
Contributors: Muthén, Bengt O.
Format: Electronic Article
Language:English
Published: 2008
In: Journal of quantitative criminology
Year: 2008, Volume: 24, Issue: 1, Pages: 1-31
Online Access: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000caa a22000002 4500
001 1764279999
003 DE-627
005 20241231011306.0
007 cr uuu---uuuuu
008 210725s2008 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-007-9036-0  |2 doi 
035 |a (DE-627)1764279999 
035 |a (DE-599)KXP1764279999 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Kreuter, Frauke  |e VerfasserIn  |0 (DE-588)1033254037  |0 (DE-627)74040105X  |0 (DE-576)380842459  |4 aut 
109 |a Kreuter, Frauke  |a Kreuterr, Frauke  |a Kreuter, F. 
245 1 0 |a Analyzing Criminal Trajectory Profiles: Bridging Multilevel and Group-based Approaches Using Growth Mixture Modeling 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Over the last 25 years, a life-course perspective on criminal behavior has assumed increasing prominence in the literature. This theoretical development has been accompanied by changes in the statistical models used to analyze criminological data. There are two main statistical modeling techniques currently used to model longitudinal data. These are growth curve models and latent class growth models, also known as group-based trajectory models. Using the well known Cambridge data and the Philadelphia cohort study, this article compares the two “classical” models—conventional growth curve model and group-based trajectory models. In addition, two growth mixture models are introduced that bridge the gap between conventional growth models and group-based trajectory models. For the Cambridge data, the different mixture models yield quite consistent inferences regarding the nature of the underlying trajectories of convictions. For the Philadelphia cohort study, the statistical indicators give stronger guidance on relative model fit. The main goals of this article are to contribute to the discussion about different modeling techniques for analyzing data from a life-course perspective and to provide a concrete step-by-step illustration of such an analysis and model checking. 
650 4 |a Developmental trajectory groups 
650 4 |a Zero-inflated Poisson distribution 
650 4 |a Growth mixture modeling 
650 4 |a Latent class growth modeling 
700 1 |8 2\p  |a Muthén, Bengt O.  |e VerfasserIn  |0 (DE-588)1106564189  |0 (DE-627)863168663  |0 (DE-576)474243419  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 24(2008), 1, Seite 1-31  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnns 
773 1 8 |g volume:24  |g year:2008  |g number:1  |g pages:1-31 
856 4 0 |u https://doi.org/10.1007/s10940-007-9036-0  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-007-9036-0  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957454123 
LOK |0 003 DE-627 
LOK |0 004 1764279999 
LOK |0 005 20210725061653 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#CCDEA784BA63F949D6A2CF413A644B9B9266E38A 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a WA-MARC-krimdoka001.raw