Overdispersion and Poisson Regression
This article discusses the use of regression models for count data. A claim is often made in criminology applications that the negative binomial distribution is the conditional distribution of choice when for a count response variable there is evidence of overdispersion. Some go on to assert that th...
| VerfasserInnen: | ; |
|---|---|
| Medienart: | Elektronisch Aufsatz |
| Sprache: | Englisch |
| Veröffentlicht: |
2008
|
| In: |
Journal of quantitative criminology
Jahr: 2008, Band: 24, Heft: 3, Seiten: 269-284 |
| Online-Zugang: |
Volltext (lizenzpflichtig) Volltext (lizenzpflichtig) |
| Journals Online & Print: | |
| Verfügbarkeit prüfen: | HBZ Gateway |
| Schlagwörter: |
| Zusammenfassung: | This article discusses the use of regression models for count data. A claim is often made in criminology applications that the negative binomial distribution is the conditional distribution of choice when for a count response variable there is evidence of overdispersion. Some go on to assert that the overdisperson problem can be “solved” when the negative binomial distribution is used instead of the more conventional Poisson distribution. In this paper, we review the assumptions required for both distributions and show that only under very special circumstances are these claims true. |
|---|---|
| ISSN: | 1573-7799 |
| DOI: | 10.1007/s10940-008-9048-4 |
