Overdispersion and Poisson Regression

This article discusses the use of regression models for count data. A claim is often made in criminology applications that the negative binomial distribution is the conditional distribution of choice when for a count response variable there is evidence of overdispersion. Some go on to assert that th...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Berk, Richard (Autor) ; MacDonald, John M. (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2008
En: Journal of quantitative criminology
Año: 2008, Volumen: 24, Número: 3, Páginas: 269-284
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 1764279972
003 DE-627
005 20210725061653.0
007 cr uuu---uuuuu
008 210725s2008 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-008-9048-4  |2 doi 
035 |a (DE-627)1764279972 
035 |a (DE-599)KXP1764279972 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Berk, Richard  |e VerfasserIn  |4 aut 
109 |a Berk, Richard  |a Berk, Richard A.  |a Berk, Richard Alan 
245 1 0 |a Overdispersion and Poisson Regression 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This article discusses the use of regression models for count data. A claim is often made in criminology applications that the negative binomial distribution is the conditional distribution of choice when for a count response variable there is evidence of overdispersion. Some go on to assert that the overdisperson problem can be “solved” when the negative binomial distribution is used instead of the more conventional Poisson distribution. In this paper, we review the assumptions required for both distributions and show that only under very special circumstances are these claims true. 
650 4 |a Overdispersion 
650 4 |a Count data 
650 4 |a Negative binomial distribution 
650 4 |a Poisson regression 
700 1 |a MacDonald, John M.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 24(2008), 3, Seite 269-284  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:24  |g year:2008  |g number:3  |g pages:269-284 
856 4 0 |u https://doi.org/10.1007/s10940-008-9048-4  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-008-9048-4  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957454107 
LOK |0 003 DE-627 
LOK |0 004 1764279972 
LOK |0 005 20210725061653 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#0B5D9476B5F77F2E38C72A89C8AC3EB000F8941C 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw