Measuring and Modeling Repeat and Near-Repeat Burglary Effects

We develop a mathematical framework aimed at analyzing repeat and near-repeat effects in crime data. Parsing burglary data from Long Beach, CA according to different counting methods, we determine the probability distribution functions for the time interval τ between repeat offenses. We then compare...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Short, M. B. (Autor)
Otros Autores: D’Orsogna, M. R. ; Brantingham, P. J. ; Tita, G. E.
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2009
En: Journal of quantitative criminology
Año: 2009, Volumen: 25, Número: 3, Páginas: 325-339
Acceso en línea: Volltext (kostenfrei)
Volltext (kostenfrei)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 1764279727
003 DE-627
005 20210725061652.0
007 cr uuu---uuuuu
008 210725s2009 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-009-9068-8  |2 doi 
035 |a (DE-627)1764279727 
035 |a (DE-599)KXP1764279727 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Short, M. B.  |e VerfasserIn  |4 aut 
245 1 0 |a Measuring and Modeling Repeat and Near-Repeat Burglary Effects 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We develop a mathematical framework aimed at analyzing repeat and near-repeat effects in crime data. Parsing burglary data from Long Beach, CA according to different counting methods, we determine the probability distribution functions for the time interval τ between repeat offenses. We then compare these observed distributions to theoretically derived distributions in which the repeat effects are due solely to persistent risk heterogeneity. We find that risk heterogeneity alone cannot explain the observed distributions, while a form of event dependence (boosts) can. Using this information, we model repeat victimization as a series of random events, the likelihood of which changes each time an offense occurs. We are able to estimate typical time scales for repeat burglary events in Long Beach by fitting our data to this model. Computer simulations of this model using these observed parameters agree with the empirical data. 
650 4 |a Event dependence 
650 4 |a Burglary 
650 4 |a Repeat victimization 
700 1 |a D’Orsogna, M. R.  |e VerfasserIn  |4 aut 
700 1 |a Brantingham, P. J.  |e VerfasserIn  |4 aut 
700 1 |a Tita, G. E.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 25(2009), 3, Seite 325-339  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:25  |g year:2009  |g number:3  |g pages:325-339 
856 |u https://link.springer.com/content/pdf/10.1007/s10940-009-9068-8.pdf  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via page says license)] 
856 4 0 |u https://doi.org/10.1007/s10940-009-9068-8  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-009-9068-8  |x Verlag  |z kostenfrei  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957453828 
LOK |0 003 DE-627 
LOK |0 004 1764279727 
LOK |0 005 20210725061652 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#49A1E2275F15869955BE3FB67EFA23A8A66A0A25 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw