Measuring and Modeling Repeat and Near-Repeat Burglary Effects
We develop a mathematical framework aimed at analyzing repeat and near-repeat effects in crime data. Parsing burglary data from Long Beach, CA according to different counting methods, we determine the probability distribution functions for the time interval τ between repeat offenses. We then compare...
Autor principal: | |
---|---|
Otros Autores: | ; ; |
Tipo de documento: | Electrónico Artículo |
Lenguaje: | Inglés |
Publicado: |
2009
|
En: |
Journal of quantitative criminology
Año: 2009, Volumen: 25, Número: 3, Páginas: 325-339 |
Acceso en línea: |
Volltext (kostenfrei) Volltext (kostenfrei) |
Journals Online & Print: | |
Verificar disponibilidad: | HBZ Gateway |
Palabras clave: |
MARC
LEADER | 00000naa a22000002c 4500 | ||
---|---|---|---|
001 | 1764279727 | ||
003 | DE-627 | ||
005 | 20210725061652.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210725s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-009-9068-8 |2 doi | |
035 | |a (DE-627)1764279727 | ||
035 | |a (DE-599)KXP1764279727 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |a Short, M. B. |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Measuring and Modeling Repeat and Near-Repeat Burglary Effects |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We develop a mathematical framework aimed at analyzing repeat and near-repeat effects in crime data. Parsing burglary data from Long Beach, CA according to different counting methods, we determine the probability distribution functions for the time interval τ between repeat offenses. We then compare these observed distributions to theoretically derived distributions in which the repeat effects are due solely to persistent risk heterogeneity. We find that risk heterogeneity alone cannot explain the observed distributions, while a form of event dependence (boosts) can. Using this information, we model repeat victimization as a series of random events, the likelihood of which changes each time an offense occurs. We are able to estimate typical time scales for repeat burglary events in Long Beach by fitting our data to this model. Computer simulations of this model using these observed parameters agree with the empirical data. | ||
650 | 4 | |a Event dependence | |
650 | 4 | |a Burglary | |
650 | 4 | |a Repeat victimization | |
700 | 1 | |a D’Orsogna, M. R. |e VerfasserIn |4 aut | |
700 | 1 | |a Brantingham, P. J. |e VerfasserIn |4 aut | |
700 | 1 | |a Tita, G. E. |e VerfasserIn |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 25(2009), 3, Seite 325-339 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnas |
773 | 1 | 8 | |g volume:25 |g year:2009 |g number:3 |g pages:325-339 |
856 | |u https://link.springer.com/content/pdf/10.1007/s10940-009-9068-8.pdf |x unpaywall |z Vermutlich kostenfreier Zugang |h publisher [open (via page says license)] | ||
856 | 4 | 0 | |u https://doi.org/10.1007/s10940-009-9068-8 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-009-9068-8 |x Verlag |z kostenfrei |3 Volltext |
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3957453828 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1764279727 | ||
LOK | |0 005 20210725061652 | ||
LOK | |0 008 210725||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2021-07-24#49A1E2275F15869955BE3FB67EFA23A8A66A0A25 | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
OAS | |a 1 | ||
ORI | |a SA-MARC-krimdoka001.raw |