Assessing Stability and Change in Criminal Offending: A Comparison of Random Effects, Semiparametric, and Fixed Effects Modeling Strategies

An important theoretical problem for criminologists is an explanation forthe robust positive correlation between prior and future criminaloffending. Nagin and Paternoster (1991) have suggested that the correlationcould be due to time-stable population differences in the underlyingproneness to commit...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
VerfasserInnen: Bushway, Shawn (VerfasserIn) ; Brame, Robert W. (VerfasserIn) ; Paternoster, Raymond 1952-2017 (VerfasserIn)
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 1999
In: Journal of quantitative criminology
Jahr: 1999, Band: 15, Heft: 1, Seiten: 23-61
Online-Zugang: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000caa a22000002c 4500
001 1764279441
003 DE-627
005 20250323030921.0
007 cr uuu---uuuuu
008 210725s1999 xx |||||o 00| ||eng c
024 7 |a 10.1023/A:1007500121120  |2 doi 
035 |a (DE-627)1764279441 
035 |a (DE-599)KXP1764279441 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Bushway, Shawn  |e VerfasserIn  |0 (DE-588)1147122326  |0 (DE-627)100849691X  |0 (DE-576)305983474  |4 aut 
109 |a Bushway, Shawn  |a Bushway, Shawn D. 
245 1 0 |a Assessing Stability and Change in Criminal Offending: A Comparison of Random Effects, Semiparametric, and Fixed Effects Modeling Strategies 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a An important theoretical problem for criminologists is an explanation forthe robust positive correlation between prior and future criminaloffending. Nagin and Paternoster (1991) have suggested that the correlationcould be due to time-stable population differences in the underlyingproneness to commit crimes (population heterogeneity) and/or thecriminogenic effect that crime has on social bonds, conventionalattachments, and the like (state dependence). Because of data andmeasurement limitations, the disentangling of population heterogeneityand state dependence requires that researchers control for unmeasuredpersistent heterogeneity. Frequently, random effects probit models havebeen employed, which, while user-friendly, make a strong parametricassumption that the unobserved heterogeneity in the population follows anormal distribution. Although semiparametric alternatives to the randomeffects probit model have recently appeared in the literature to avoid thisproblem, in this paper we return to reconsider the fully parametric model. Viasimulation evidence, we first show that the random effects probit modelproduces biased estimates as the departure of heterogeneity from normalitybecomes more substantial. Using the 1958 Philadelphia cohort data, we thencompare the results from a random effects probit model with a semiparametricprobit model and a fixed effects logit model that makes no assumptions aboutthe distribution of unobserved heterogeneity. We found that with this dataset all three models converged on the same substantive result—evenafter controlling for unobserved persistent heterogeneity, with models thattreat the unobserved heterogeneity very differently, prior conduct had apronounced effect on subsequent offending. These results are inconsistentwith a model that attributes all of the positive correlation between priorand future offending to differences in criminal propensity. Sinceresearchers will often be completely blind with respect to the tenabilityof the normality assumption, we conclude that different estimationstrategies should be brought to bear on the data. 
650 4 |a Fixed effects models 
650 4 |a semiparametric models 
650 4 |a Random effects models 
650 4 |a Change 
650 4 |a Stability 
650 4 |a Criminal offending 
700 1 |8 2\p  |a Brame, Robert W.  |e VerfasserIn  |0 (DE-588)1205899294  |0 (DE-627)1691748072  |4 aut 
700 1 |8 3\p  |a Paternoster, Raymond  |d 1952-2017  |e VerfasserIn  |0 (DE-588)1064353932  |0 (DE-627)813161185  |0 (DE-576)162493177  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 15(1999), 1, Seite 23-61  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:15  |g year:1999  |g number:1  |g pages:23-61 
856 4 0 |u https://doi.org/10.1023/A:1007500121120  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/pdf?id=doi:10.1023/A:1007500121120  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 3  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957453402 
LOK |0 003 DE-627 
LOK |0 004 1764279441 
LOK |0 005 20210725061651 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#BE0A99FEA2E80E82A3A21CAB0A0F0B0E4F820526 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw