Forecasts of Violence to Inform Sentencing Decisions

Objectives Recent legislation in Pennsylvania mandates that forecasts of "future dangerousness" be provided to judges when sentences are given. Similar requirements already exist in other jurisdictions. Research has shown that machine learning can lead to usefully accurate forecasts of cri...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Berk, Richard (Autor)
Otros Autores: Bleich, Justin
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2014
En: Journal of quantitative criminology
Año: 2014, Volumen: 30, Número: 1, Páginas: 79-96
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1764278534
003 DE-627
005 20250323030919.0
007 cr uuu---uuuuu
008 210725s2014 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-013-9195-0  |2 doi 
035 |a (DE-627)1764278534 
035 |a (DE-599)KXP1764278534 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |8 1\p  |a Berk, Richard  |e VerfasserIn  |0 (DE-588)142027235  |0 (DE-627)632874031  |0 (DE-576)16025938X  |4 aut 
109 |a Berk, Richard  |a Berk, Richard A.  |a Berk, Richard Alan 
245 1 0 |a Forecasts of Violence to Inform Sentencing Decisions 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Objectives Recent legislation in Pennsylvania mandates that forecasts of "future dangerousness" be provided to judges when sentences are given. Similar requirements already exist in other jurisdictions. Research has shown that machine learning can lead to usefully accurate forecasts of criminal behavior in such setting. But there are settings in which there is insufficient IT infrastructure to support machine learning. The intent of this paper is provide a prototype procedure for making forecasts of future dangerousness that could be used to inform sentencing decisions when machine learning is not practical. We consider how classification trees can be improved so that they may provide an acceptable second choice. Methods We apply an version of classifications trees available in R, with some technical enhancements to improve tree stability. Our approach is illustrated with real data that could be used to inform sentencing decisions. Results Modest sized trees grown from large samples can forecast well and in a stable fashion, especially if the small fraction of indecisive classifications are found and accounted for in a systematic manner. But machine learning is still to be preferred when practical. Conclusions Our enhanced version of classifications trees may well provide a viable alternative to machine learning when machine learning is beyond local IT capabilities. 
650 4 |a Classification trees 
650 4 |a machine learning 
650 4 |a Forecasting 
650 4 |a Sentencing 
700 1 |8 2\p  |a Bleich, Justin  |e VerfasserIn  |0 (DE-588)1047308371  |0 (DE-627)778093905  |0 (DE-576)400883899  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 30(2014), 1, Seite 79-96  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:30  |g year:2014  |g number:1  |g pages:79-96 
856 4 0 |u https://doi.org/10.1007/s10940-013-9195-0  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-013-9195-0  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 |8 2  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957452163 
LOK |0 003 DE-627 
LOK |0 004 1764278534 
LOK |0 005 20210725061648 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#86DA18F2C979F619A9696DB154F49C44B6327DC8 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw