Forecasts of Violence to Inform Sentencing Decisions
Objectives Recent legislation in Pennsylvania mandates that forecasts of "future dangerousness" be provided to judges when sentences are given. Similar requirements already exist in other jurisdictions. Research has shown that machine learning can lead to usefully accurate forecasts of cri...
Autor principal: | |
---|---|
Otros Autores: | |
Tipo de documento: | Electrónico Artículo |
Lenguaje: | Inglés |
Publicado: |
2014
|
En: |
Journal of quantitative criminology
Año: 2014, Volumen: 30, Número: 1, Páginas: 79-96 |
Acceso en línea: |
Volltext (lizenzpflichtig) Volltext (lizenzpflichtig) |
Journals Online & Print: | |
Verificar disponibilidad: | HBZ Gateway |
Palabras clave: |
MARC
LEADER | 00000caa a22000002c 4500 | ||
---|---|---|---|
001 | 1764278534 | ||
003 | DE-627 | ||
005 | 20250323030919.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210725s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-013-9195-0 |2 doi | |
035 | |a (DE-627)1764278534 | ||
035 | |a (DE-599)KXP1764278534 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 2,1 |2 ssgn | ||
100 | 1 | |8 1\p |a Berk, Richard |e VerfasserIn |0 (DE-588)142027235 |0 (DE-627)632874031 |0 (DE-576)16025938X |4 aut | |
109 | |a Berk, Richard |a Berk, Richard A. |a Berk, Richard Alan | ||
245 | 1 | 0 | |a Forecasts of Violence to Inform Sentencing Decisions |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Objectives Recent legislation in Pennsylvania mandates that forecasts of "future dangerousness" be provided to judges when sentences are given. Similar requirements already exist in other jurisdictions. Research has shown that machine learning can lead to usefully accurate forecasts of criminal behavior in such setting. But there are settings in which there is insufficient IT infrastructure to support machine learning. The intent of this paper is provide a prototype procedure for making forecasts of future dangerousness that could be used to inform sentencing decisions when machine learning is not practical. We consider how classification trees can be improved so that they may provide an acceptable second choice. Methods We apply an version of classifications trees available in R, with some technical enhancements to improve tree stability. Our approach is illustrated with real data that could be used to inform sentencing decisions. Results Modest sized trees grown from large samples can forecast well and in a stable fashion, especially if the small fraction of indecisive classifications are found and accounted for in a systematic manner. But machine learning is still to be preferred when practical. Conclusions Our enhanced version of classifications trees may well provide a viable alternative to machine learning when machine learning is beyond local IT capabilities. | ||
650 | 4 | |a Classification trees | |
650 | 4 | |a machine learning | |
650 | 4 | |a Forecasting | |
650 | 4 | |a Sentencing | |
700 | 1 | |8 2\p |a Bleich, Justin |e VerfasserIn |0 (DE-588)1047308371 |0 (DE-627)778093905 |0 (DE-576)400883899 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 30(2014), 1, Seite 79-96 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnas |
773 | 1 | 8 | |g volume:30 |g year:2014 |g number:1 |g pages:79-96 |
856 | 4 | 0 | |u https://doi.org/10.1007/s10940-013-9195-0 |x Resolving-System |z lizenzpflichtig |3 Volltext |
856 | 4 | 0 | |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-013-9195-0 |x Verlag |z lizenzpflichtig |3 Volltext |
883 | |8 1 |a cgwrk |d 20250301 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
883 | |8 2 |a cgwrk |d 20250301 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | ||
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3957452163 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1764278534 | ||
LOK | |0 005 20210725061648 | ||
LOK | |0 008 210725||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2021-07-24#86DA18F2C979F619A9696DB154F49C44B6327DC8 | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
ORI | |a SA-MARC-krimdoka001.raw |