Prisons and Crime, Backwards in High Heels

Objectives Prisons reduce crime rates, but crime increases prison populations. OLS estimates of the effects of prisons on crime combine the two effects and are biased toward zero. The standard solution—to identify the crime equation by finding instruments for prison—is suspect, because most variable...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Spelman, William (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2013
En: Journal of quantitative criminology
Año: 2013, Volumen: 29, Número: 4, Páginas: 643-674
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 1764278496
003 DE-627
005 20210725061648.0
007 cr uuu---uuuuu
008 210725s2013 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-013-9193-2  |2 doi 
035 |a (DE-627)1764278496 
035 |a (DE-599)KXP1764278496 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Spelman, William  |e VerfasserIn  |4 aut 
245 1 0 |a Prisons and Crime, Backwards in High Heels 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Objectives Prisons reduce crime rates, but crime increases prison populations. OLS estimates of the effects of prisons on crime combine the two effects and are biased toward zero. The standard solution—to identify the crime equation by finding instruments for prison—is suspect, because most variables that predict prison populations can be expected to affect crime, as well. An alternative is to identify the prison equation by finding instruments for crime, allowing an unbiased estimate of the effect of crime on prisons. Because the two coefficients in a simultaneous system are related through simple algebra, we can then work backward to obtain an unbiased estimate of the effect of prisons on crime. Methods Potential instruments for crime are tested and used to identify the prison equation for the 50 U.S. states for the period 1978–2009. The effect of prisons on crime consistent with this relationship is obtained through algebra; standard errors are obtained through Monte Carlo simulation. Results Resulting estimates of the effect of prisons on crime are around −0.25 ± 0.15. This is larger than biased OLS estimates, but similar in size to previous estimates based on standard instruments. Conclusions When estimating the effect of a public policy response on a public problem, it may be more productive to find instruments for the problem and work backward than to find instruments for the response and work forward. 
650 4 |a Prison effectiveness 
650 4 |a instrumental variables 
650 4 |a Simultaneous equations 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 29(2013), 4, Seite 643-674  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:29  |g year:2013  |g number:4  |g pages:643-674 
856 4 0 |u https://doi.org/10.1007/s10940-013-9193-2  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-013-9193-2  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957452120 
LOK |0 003 DE-627 
LOK |0 004 1764278496 
LOK |0 005 20210725061648 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#354DD980E767B8B068659B4BAB5188D2D14C4332 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw