Statistical Inference After Model Selection

Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence in...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Berk, Richard (VerfasserIn)
Beteiligte: Brown, Lawrence ; Zhao, Linda
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2010
In: Journal of quantitative criminology
Jahr: 2010, Band: 26, Heft: 2, Seiten: 217-236
Online-Zugang: Vermutlich kostenfreier Zugang
Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:

MARC

LEADER 00000naa a22000002c 4500
001 1764277627
003 DE-627
005 20210725061646.0
007 cr uuu---uuuuu
008 210725s2010 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-009-9077-7  |2 doi 
035 |a (DE-627)1764277627 
035 |a (DE-599)KXP1764277627 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Berk, Richard  |e VerfasserIn  |4 aut 
109 |a Berk, Richard  |a Berk, Richard A.  |a Berk, Richard Alan 
245 1 0 |a Statistical Inference After Model Selection 
264 1 |c 2010 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Conventional statistical inference requires that a model of how the data were generated be known before the data are analyzed. Yet in criminology, and in the social sciences more broadly, a variety of model selection procedures are routinely undertaken followed by statistical tests and confidence intervals computed for a “final” model. In this paper, we examine such practices and show how they are typically misguided. The parameters being estimated are no longer well defined, and post-model-selection sampling distributions are mixtures with properties that are very different from what is conventionally assumed. Confidence intervals and statistical tests do not perform as they should. We examine in some detail the specific mechanisms responsible. We also offer some suggestions for better practice and show though a criminal justice example using real data how proper statistical inference in principle may be obtained. 
650 4 |a Mixtures of distributions 
650 4 |a Statistical Inference 
650 4 |a Model selection 
700 1 |a Brown, Lawrence  |e VerfasserIn  |4 aut 
700 1 |a Zhao, Linda  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 26(2010), 2, Seite 217-236  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:26  |g year:2010  |g number:2  |g pages:217-236 
856 |u https://repository.upenn.edu/cgi/viewcontent.cgi?article=1057&context=statistics_papers  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h repository [oa repository (via OAI-PMH title and first author match)] 
856 4 0 |u https://doi.org/10.1007/s10940-009-9077-7  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-009-9077-7  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957451086 
LOK |0 003 DE-627 
LOK |0 004 1764277627 
LOK |0 005 20210725061646 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#DD950B26CB8814A792CE7941F2545D994106588E 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw