Estimation of arrest careers using hierarchical stochastic models

This paper introduces a general procedure using hierarchical stochastic models for characterizing criminal careers within a population of heterogeneous offenders. Individuals engage in criminal careers which are treated as stochastic processes governed by fixed parameters (e.g., a rate parameter), a...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Ahn, Chul W. (Autor)
Otros Autores: Blumstein, Alfred ; Schervish, Mark
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 1990
En: Journal of quantitative criminology
Año: 1990, Volumen: 6, Número: 2, Páginas: 131-152
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1764277155
003 DE-627
005 20250323030916.0
007 cr uuu---uuuuu
008 210725s1990 xx |||||o 00| ||eng c
024 7 |a 10.1007/BF01065848  |2 doi 
035 |a (DE-627)1764277155 
035 |a (DE-599)KXP1764277155 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Ahn, Chul W.  |e VerfasserIn  |4 aut 
245 1 0 |a Estimation of arrest careers using hierarchical stochastic models 
264 1 |c 1990 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This paper introduces a general procedure using hierarchical stochastic models for characterizing criminal careers within a population of heterogeneous offenders. Individuals engage in criminal careers which are treated as stochastic processes governed by fixed parameters (e.g., a rate parameter), and these parameters come from specified distributions. The parameters of these distributions at the upper level of the hierarchy must then be specified. The models are estimated using data on all persons arrested at least once in the six-county Detroit Standard Metropolitan Statistical Area during the 4 years 1974–1977 for a criterion offense (an index crime other than larceny) and arrested at least once for robbery through April 1979. The collected data set is not a random sample of all such offenders in the population. There is a bias toward selecting those with a higher arrest frequency. In order to make more general inferences, statistical adjustment was needed to overcome the arrest-frequency sampling bias. We construct a series of models for the arrest career and fit the models with the data set of arrests. After correcting biases in the data, we estimate the model parameters using empirical Bayes methods and then examine the resulting models. 
650 4 |a Criminal Careers 
650 4 |a empirical Bayes 
650 4 |a sampling bias 
650 4 |a stochastic models 
700 1 |8 1\p  |a Blumstein, Alfred  |e VerfasserIn  |0 (DE-588)170185133  |0 (DE-627)060235314  |0 (DE-576)131090119  |4 aut 
700 1 |a Schervish, Mark  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 6(1990), 2, Seite 131-152  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:6  |g year:1990  |g number:2  |g pages:131-152 
856 4 0 |u https://doi.org/10.1007/BF01065848  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/pdf?id=doi:10.1007/BF01065848  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957450578 
LOK |0 003 DE-627 
LOK |0 004 1764277155 
LOK |0 005 20210725061645 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#98FE2189BDE0BCDCB419A8DBAE176DEAA1EE6CAA 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw