Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level

Objectives Explore Bayesian spatio-temporal methods to analyse local patterns of crime change over time at the small-area level through an application to property crime data in the Regional Municipality of York, Ontario, Canada. Methods This research represents the first application of Bayesian spat...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Law, Jane (Autor)
Otros Autores: Quick, Matthew 1973- ; Chan, Ping
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2014
En: Journal of quantitative criminology
Año: 2014, Volumen: 30, Número: 1, Páginas: 57-78
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1764276892
003 DE-627
005 20250323030915.0
007 cr uuu---uuuuu
008 210725s2014 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-013-9194-1  |2 doi 
035 |a (DE-627)1764276892 
035 |a (DE-599)KXP1764276892 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Law, Jane  |e VerfasserIn  |4 aut 
245 1 0 |a Bayesian Spatio-Temporal Modeling for Analysing Local Patterns of Crime Over Time at the Small-Area Level 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Objectives Explore Bayesian spatio-temporal methods to analyse local patterns of crime change over time at the small-area level through an application to property crime data in the Regional Municipality of York, Ontario, Canada. Methods This research represents the first application of Bayesian spatio-temporal modeling to crime trend analysis at a large map scale. The Bayesian model, fitted by Markov chain Monte Carlo simulation using WinBUGS, stabilized risk estimates in small (census dissemination) areas and controlled for spatial autocorrelation (through spatial random effects modeling), deprivation, and scarce data. It estimated (1) (linear) mean trend; (2) area-specific differential trends; and (3) (posterior) probabilities of area-specific differential trends differing from zero (i.e. away from the mean trend) for revealing locations of hot and cold spots. Results Property crime exhibited a declining mean trend across the study region from 2006 to 2007. Variation of area-specific trends was statistically significant, which was apparent from the map of (95 % credible interval) differential trends. Hot spots in the north and south west, and cold spots in the middle and east of the region were identified. Conclusions Bayesian spatio-temporal analysis contributes to a detailed understanding of small-area crime trends and risks. It estimates crime trend for each area as well as an overall mean trend. The new approach of identifying hot/cold spots through analysing and mapping probabilities of area-specific crime trends differing from the mean trend highlights specific locations where crime situation is deteriorating or improving over time. Future research should analyse trends over three or more periods (allowing for non-linear time trends) and associated (changing) local risk factors. 
650 4 |a Spatial 
650 4 |a Spatio-temporal 
650 4 |a Bayesian hierarchical models 
650 4 |a Hot Spots 
650 4 |a Crime trends 
650 4 |a Probability mapping 
700 1 |8 1\p  |a Quick, Matthew  |d 1973-  |e VerfasserIn  |0 (DE-588)1032788461  |0 (DE-627)739935496  |0 (DE-576)380285819  |4 aut 
700 1 |a Chan, Ping  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 30(2014), 1, Seite 57-78  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799  |7 nnas 
773 1 8 |g volume:30  |g year:2014  |g number:1  |g pages:57-78 
856 4 0 |u https://doi.org/10.1007/s10940-013-9194-1  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s10940-013-9194-1  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20250301  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957450268 
LOK |0 003 DE-627 
LOK |0 004 1764276892 
LOK |0 005 20210725061644 
LOK |0 008 210725||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-24#A53EAE091F11DC96C3A66CAC93CE15903C515562 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw