Assessing the Predictive Utility of Logistic Regression, Classification and Regression Tree, Chi-Squared Automatic Interaction Detection, and Neural Network Models in Predicting Inmate Misconduct

This study assesses the relative utility of a traditional regression approach - logistic regression (LR) - and three classification techniques - classification and regression tree (CART), chi-squared automatic interaction detection (CHAID), and multi-layer perceptron neural network (MLPNN)—in predic...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Ngo, Fawn T. (Autor) ; Govindu, Ramakrishna (Autor) ; Agarwal, Anurag (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2015
En: American journal of criminal justice
Año: 2015, Volumen: 40, Número: 1, Páginas: 47-74
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 176420106X
003 DE-627
005 20210723061642.0
007 cr uuu---uuuuu
008 210723s2015 xx |||||o 00| ||eng c
024 7 |a 10.1007/s12103-014-9246-6  |2 doi 
035 |a (DE-627)176420106X 
035 |a (DE-599)KXP176420106X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Ngo, Fawn T.  |e VerfasserIn  |4 aut 
245 1 0 |a Assessing the Predictive Utility of Logistic Regression, Classification and Regression Tree, Chi-Squared Automatic Interaction Detection, and Neural Network Models in Predicting Inmate Misconduct 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This study assesses the relative utility of a traditional regression approach - logistic regression (LR) - and three classification techniques - classification and regression tree (CART), chi-squared automatic interaction detection (CHAID), and multi-layer perceptron neural network (MLPNN)—in predicting inmate misconduct. The four models were tested using a sample of inmates held in state and federal prisons and predictors derived from the importation model on inmate adaptation. Multi-validation procedure and multiple evaluation indicators were used to evaluate and report the predictive accuracy. The overall accuracy of the four models varied between 0.60 and 0.66 with an overall AUC range of 0.60–0.70. The LR and MLPNN methods performed significantly better than the CART and CHAID techniques at identifying misbehaving inmates and the CHAID method outperformed the CART approach in classifying defied inmates. The MLPNN method performed significantly better than the LR technique in predicting inmate misconduct among the training samples. 
650 4 |a Inmate misconduct 
650 4 |a Importation model 
650 4 |a Neural networks 
650 4 |a Chi-squared automatic interaction detection 
650 4 |a Classification and regression tree 
650 4 |a Logistic regression 
650 4 |a Comparative statistical techniques 
650 4 |a Actuarial risk assessment techniques 
700 1 |a Govindu, Ramakrishna  |e VerfasserIn  |4 aut 
700 1 |a Agarwal, Anurag  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t American journal of criminal justice  |d New York, NY [u.a.] : Springer, 1975  |g 40(2015), 1, Seite 47-74  |h Online-Ressource  |w (DE-627)545782163  |w (DE-600)2387971-3  |w (DE-576)306834987  |x 1936-1351  |7 nnas 
773 1 8 |g volume:40  |g year:2015  |g number:1  |g pages:47-74 
856 4 0 |u https://doi.org/10.1007/s12103-014-9246-6  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s12103-014-9246-6  |x Verlag  |z lizenzpflichtig  |3 Volltext 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957025583 
LOK |0 003 DE-627 
LOK |0 004 176420106X 
LOK |0 005 20210723061642 
LOK |0 008 210723||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-22#4A622D0AD652C85D702E54E4D33A76C8236B4387 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw