Classifying Risk Development and Predicting Parolee Recidivism with Growth Mixture Models

Using two data sets, containing 582 total cases, this study investigates whether classifying offenders on trajectories of risk scores helps predict parolee recidivism. One data set has 4 years of risk scores and another has three. Both data sets contain control variables measuring released inmates’...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Hochstetler, Andy (Autor)
Otros Autores: Peters, David J. ; DeLisi, Matt
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2016
En: American journal of criminal justice
Año: 2016, Volumen: 41, Número: 3, Páginas: 602-620
Acceso en línea: Volltext (lizenzpflichtig)
Volltext (lizenzpflichtig)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1764200950
003 DE-627
005 20241231011242.0
007 cr uuu---uuuuu
008 210723s2016 xx |||||o 00| ||eng c
024 7 |a 10.1007/s12103-015-9320-8  |2 doi 
035 |a (DE-627)1764200950 
035 |a (DE-599)KXP1764200950 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 2,1  |2 ssgn 
100 1 |a Hochstetler, Andy  |e VerfasserIn  |4 aut 
245 1 0 |a Classifying Risk Development and Predicting Parolee Recidivism with Growth Mixture Models 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Using two data sets, containing 582 total cases, this study investigates whether classifying offenders on trajectories of risk scores helps predict parolee recidivism. One data set has 4 years of risk scores and another has three. Both data sets contain control variables measuring released inmates’ characteristics. The dependent variable measures arrest or return to prison over a 2-year span. A growth mixture model, classifies offenders into three classes, a stable and high trajectory group, a group with a high but declining risk trajectory, and a small, low-risk group with little change. Trajectory class membership correlates with recidivism in both data sets. Supplementary analyses show that assigned classes are better predictors of recidivism than last risk scores or simple change scores. Discussion centers on the appeal and relevance of trajectories of risk, as opposed to static measures, for predicting offender misconduct and other outcomes. 
650 4 |a Corrections 
650 4 |a Risk Assessment 
650 4 |a Trajectory 
650 4 |a Recidivism 
700 1 |a Peters, David J.  |e VerfasserIn  |4 aut 
700 1 |8 1\p  |a DeLisi, Matt  |e VerfasserIn  |0 (DE-588)1057710989  |0 (DE-627)796179417  |0 (DE-576)184420946  |4 aut 
773 0 8 |i Enthalten in  |t American journal of criminal justice  |d New York, NY [u.a.] : Springer, 1975  |g 41(2016), 3, Seite 602-620  |h Online-Ressource  |w (DE-627)545782163  |w (DE-600)2387971-3  |w (DE-576)306834987  |x 1936-1351  |7 nnas 
773 1 8 |g volume:41  |g year:2016  |g number:3  |g pages:602-620 
856 4 0 |u https://doi.org/10.1007/s12103-015-9320-8  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u http://link.springer.com/openurl/fulltext?id=doi:10.1007/s12103-015-9320-8  |x Verlag  |z lizenzpflichtig  |3 Volltext 
883 |8 1  |a cgwrk  |d 20241001  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
935 |a mkri 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3957025478 
LOK |0 003 DE-627 
LOK |0 004 1764200950 
LOK |0 005 20210723061642 
LOK |0 008 210723||||||||||||||||ger||||||| 
LOK |0 035   |a (DE-2619)KrimDok#2021-07-22#2D5CCC14B1F29AFF883ECD107BC0BEE4B6C7072F 
LOK |0 040   |a DE-2619  |c DE-627  |d DE-2619 
LOK |0 092   |o n 
LOK |0 852   |a DE-2619 
LOK |0 852 1  |9 00 
LOK |0 935   |a zota 
ORI |a SA-MARC-krimdoka001.raw