Mapping the Risk Terrain for Crime Using Machine Learning
We illustrate how a machine learning algorithm, Random Forests, can provide accurate long-term predictions of crime at micro places relative to other popular techniques. We also show how recent advances in model summaries can help to open the ‘black box’ of Random Forests, considerably improving the...
1. VerfasserIn: | |
---|---|
Beteiligte: | |
Medienart: | Elektronisch Aufsatz |
Sprache: | Englisch |
Veröffentlicht: |
[2021]
|
In: |
Journal of quantitative criminology
Jahr: 2021, Band: 37, Heft: 2, Seiten: 445-480 |
Online-Zugang: |
Vermutlich kostenfreier Zugang Volltext (lizenzpflichtig) |
Journals Online & Print: | |
Verfügbarkeit prüfen: | HBZ Gateway |
Schlagwörter: |
MARC
LEADER | 00000naa a22000002 4500 | ||
---|---|---|---|
001 | 1760917052 | ||
003 | DE-627 | ||
005 | 20210621112116.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210621s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-020-09457-7 |2 doi | |
035 | |a (DE-627)1760917052 | ||
035 | |a (DE-599)KXP1760917052 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Wheeler, Andrew P. |e VerfasserIn |0 (DE-588)1170829775 |0 (DE-627)1040128602 |0 (DE-576)512607397 |4 aut | |
109 | |a Wheeler, Andrew P. |a Wheeler, Andrew | ||
245 | 1 | 0 | |a Mapping the Risk Terrain for Crime Using Machine Learning |
264 | 1 | |c [2021] | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We illustrate how a machine learning algorithm, Random Forests, can provide accurate long-term predictions of crime at micro places relative to other popular techniques. We also show how recent advances in model summaries can help to open the ‘black box’ of Random Forests, considerably improving their interpretability. | ||
650 | 4 | |a Risk-terrain-models | |
650 | 4 | |a Micro-places | |
650 | 4 | |a Machine-learning | |
650 | 4 | |a Random forests | |
650 | 4 | |a Robbery | |
700 | 1 | |a Steenbeek, Wouter |e VerfasserIn |0 (DE-588)1206903910 |0 (DE-627)169315434X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 37(2021), 2, Seite 445-480 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2021 |g number:2 |g pages:445-480 |
856 | |u https://osf.io/download/5e21b040edceab008782df53/ |x unpaywall |z Vermutlich kostenfreier Zugang |h repository [oa repository (via OAI-PMH title and first author match)] | ||
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10940-020-09457-7 |x Resolving-System |z lizenzpflichtig |3 Volltext |
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3940406538 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1760917052 | ||
LOK | |0 005 20210621112116 | ||
LOK | |0 008 210621||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-21-110 |c DE-627 |d DE-21-110 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-21-110 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a krub |a krzo | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 395745297X | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1760917052 | ||
LOK | |0 005 20210725061650 | ||
LOK | |0 008 210725||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2021-07-24#D76CA493619415256384FB4095777D1C7F5CE58D | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
OAS | |a 1 | ||
ORI | |a SA-MARC-krimdoka001.raw |