Exploring the Determinants of Crime-Terror Cooperation using Machine Learning

This study seeks to further strengthen extant knowledge regarding terrorist group involvement in organized criminal activity through two means. First, it measures a set of environmental and organizational characteristics for a sample of well-known terrorist organizations based on the crime-terror li...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quantitative criminology
Main Author: Semmelbeck, Julia (Author)
Contributors: Besaw, Clayton (Author)
Format: Electronic Article
Language:English
Published: 2020
In:Journal of quantitative criminology
Year: 2020, Volume: 36, Issue: 3, Pages: 527-558
Online Access: Volltext (Resolving-System)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:
LEADER 02440nab a22005052 4500
001 1738421864
003 DE-627
005 20201111110018.0
007 cr uuu---uuuuu
008 201111s2020 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10940-019-09421-0  |2 doi 
035 |a (DE-627)1738421864 
035 |a (DE-599)KXP1738421864 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Semmelbeck, Julia  |d 1986-  |e VerfasserIn  |0 (DE-588)1218545682  |0 (DE-627)1733899545  |4 aut 
109 |a Semmelbeck, Julia 1986- 
245 1 0 |a Exploring the Determinants of Crime-Terror Cooperation using Machine Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a This study seeks to further strengthen extant knowledge regarding terrorist group involvement in organized criminal activity through two means. First, it measures a set of environmental and organizational characteristics for a sample of well-known terrorist organizations based on the crime-terror literature. Second, it illustrates the utility of inductive research designs for examining patterns in the criminal behavior of terrorist groups for theory building and the potential risk classification of new terrorist organizations in the future. 
700 1 |a Besaw, Clayton  |e VerfasserIn  |0 (DE-588)1206663790  |0 (DE-627)1692910779  |4 aut 
773 0 8 |i Enthalten in  |t Journal of quantitative criminology  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985  |g 36(2020), 3, Seite 527-558  |h Online-Ressource  |w (DE-627)320578003  |w (DE-600)2017241-2  |w (DE-576)104082321  |x 1573-7799 
856 4 0 |u http://dx.doi.org/10.1007/s10940-019-09421-0  |x Resolving-System  |3 Volltext 
936 u w |d 36  |j 2020  |e 3  |h 527-558 
951 |a AR 
ELC |a 1 
FUL |e http://localhost/cgi-bin/full_text_lookup?id=1738421864 
LOK |0 000 xxxxxnx a22 zn 4500 
LOK |0 001 3798682224 
LOK |0 003 DE-627 
LOK |0 004 1738421864 
LOK |0 005 20201111110018 
LOK |0 008 201111||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n  |8 0 
LOK |0 689   |a s  |a Terrorism 
LOK |0 689   |a s  |a Organized crime 
LOK |0 689   |a s  |a Machine learning 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krub  |a krzo 
ORI |a WA-MARC-krimdoka001.raw