The “Pliability” of Criminological Analyses: assessing Bias in Regression Estimates Using Monte Carlo Simulations
When biased coefficient and standard error estimates are published, they can result in inaccurate findings which might motivate ineffective—or harmful—policy choices and reduce the legitimacy of social scientific research. In this paper, we demonstrate how Monte Carlo simulations (MCS) can be used t...
Main Author: | |
---|---|
Contributors: | ; |
Format: | Electronic Article |
Language: | English |
Published: |
2020
|
In: |
Journal of quantitative criminology
Year: 2020, Volume: 36, Issue: 2, Pages: 371-394 |
Online Access: |
Volltext (Resolving-System) |
Journals Online & Print: | |
Check availability: | HBZ Gateway |
Keywords: |
MARC
LEADER | 00000naa a22000002 4500 | ||
---|---|---|---|
001 | 1734806834 | ||
003 | DE-627 | ||
005 | 20201006111226.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10940-018-9398-5 |2 doi | |
035 | |a (DE-627)1734806834 | ||
035 | |a (DE-599)KXP1734806834 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a West, Matthew P. |e VerfasserIn |4 aut | |
245 | 1 | 4 | |a The “Pliability” of Criminological Analyses |b assessing Bias in Regression Estimates Using Monte Carlo Simulations |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a When biased coefficient and standard error estimates are published, they can result in inaccurate findings which might motivate ineffective—or harmful—policy choices and reduce the legitimacy of social scientific research. In this paper, we demonstrate how Monte Carlo simulations (MCS) can be used to evaluate potential bias in estimates. | ||
650 | 4 | |a Replication | |
650 | 4 | |a Regression | |
650 | 4 | |a Estimation bias | |
650 | 4 | |a Monte Carlo simulation | |
700 | 1 | |a Cohen, Mark A. |e VerfasserIn |0 (DE-588)170054586 |0 (DE-627)060072555 |0 (DE-576)181761475 |4 aut | |
700 | 1 | |a Rorie, Melissa |d 1981- |e VerfasserIn |0 (DE-588)1176041061 |0 (DE-627)1047202808 |0 (DE-576)516190431 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of quantitative criminology |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1985 |g 36(2020), 2, Seite 371-394 |h Online-Ressource |w (DE-627)320578003 |w (DE-600)2017241-2 |w (DE-576)104082321 |x 1573-7799 |7 nnns |
773 | 1 | 8 | |g volume:36 |g year:2020 |g number:2 |g pages:371-394 |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s10940-018-9398-5 |x Resolving-System |3 Volltext |
935 | |a mkri | ||
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3768833305 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1734806834 | ||
LOK | |0 005 20201006111226 | ||
LOK | |0 008 201006||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-21-110 |c DE-627 |d DE-21-110 | ||
LOK | |0 092 |o n | ||
LOK | |0 689 |a s |a Monte Carlo simulation | ||
LOK | |0 689 |a s |a Estimation bias | ||
LOK | |0 689 |a s |a Regression | ||
LOK | |0 689 |a s |a Replication | ||
LOK | |0 852 |a DE-21-110 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a krub |a krzo | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 3957451329 | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1734806834 | ||
LOK | |0 005 20210725061647 | ||
LOK | |0 008 210725||||||||||||||||ger||||||| | ||
LOK | |0 035 |a (DE-2619)KrimDok#2021-07-24#AC6A581BEAC398D1DA500E99619020F09737DB6F | ||
LOK | |0 040 |a DE-2619 |c DE-627 |d DE-2619 | ||
LOK | |0 092 |o n | ||
LOK | |0 852 |a DE-2619 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a zota | ||
ORI | |a SA-MARC-krimdoka001.raw |