Out With the Old and in With the New? An Empirical Comparison of Supervised Learning Algorithms to Predict Recidivism

Recent research has produced mixed results as to whether newer machine learning algorithms outperform older, more traditional methods such as logistic regression in predicting recidivism. In this study, we compared the performance of 12 supervised learning algorithms to predict recidivism among offe...

Full description

Saved in:  
Bibliographic Details
Main Author: Duwe, Grant 1971- (Author)
Contributors: Kim, KiDeuk
Format: Electronic Article
Language:English
Published: 2017
In: Criminal justice policy review
Year: 2017, Volume: 28, Issue: 6, Pages: 570-600
Online Access: Volltext (Resolving-System)
Journals Online & Print:
Drawer...
Check availability: HBZ Gateway
Keywords:

MARC

LEADER 00000naa a22000002 4500
001 1725655268
003 DE-627
005 20200728101249.0
007 cr uuu---uuuuu
008 200728s2017 xx |||||o 00| ||eng c
024 7 |a 10.1177/0887403415604899  |2 doi 
035 |a (DE-627)1725655268 
035 |a (DE-599)KXP1725655268 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Duwe, Grant  |d 1971-  |e VerfasserIn  |0 (DE-588)1115828142  |0 (DE-627)870064460  |0 (DE-576)266816266  |4 aut 
109 |a Duwe, Grant 1971- 
245 1 0 |a Out With the Old and in With the New? An Empirical Comparison of Supervised Learning Algorithms to Predict Recidivism 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Recent research has produced mixed results as to whether newer machine learning algorithms outperform older, more traditional methods such as logistic regression in predicting recidivism. In this study, we compared the performance of 12 supervised learning algorithms to predict recidivism among offenders released from Minnesota prisons. Using multiple predictive validity metrics, we assessed the performance of these algorithms across varying sample sizes, recidivism base rates, and number of predictors in the data set. The newer machine learning algorithms generally yielded better predictive validity results. LogitBoost had the best overall performance, followed by Random forests, MultiBoosting, bagged trees, and logistic model trees. Still, the gap between the best and worst algorithms was relatively modest, and none of the methods performed the best in each of the 10 scenarios we examined. The results suggest that multiple methods, including machine learning algorithms, should be considered in the development of recidivism risk assessment instruments. 
700 1 |a Kim, KiDeuk  |e VerfasserIn  |0 (DE-588)1041339607  |0 (DE-627)767024524  |0 (DE-576)392766582  |4 aut 
773 0 8 |i Enthalten in  |t Criminal justice policy review  |d London : Sage, 1986  |g 28(2017), 6, Seite 570-600  |h Online-Ressource  |w (DE-627)33150796X  |w (DE-600)2051883-3  |w (DE-576)094502471  |x 1552-3586  |7 nnns 
773 1 8 |g volume:28  |g year:2017  |g number:6  |g pages:570-600 
856 4 0 |u http://dx.doi.org/10.1177/0887403415604899  |x Resolving-System  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 373091636X 
LOK |0 003 DE-627 
LOK |0 004 1725655268 
LOK |0 005 20200728101249 
LOK |0 008 200728||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n 
LOK |0 689   |a s  |a Machine learning 
LOK |0 689   |a s  |a Predictive discrimination 
LOK |0 689   |a s  |a Calibration 
LOK |0 689   |a s  |a Recidivism 
LOK |0 689   |a s  |a Risk assessment 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krub  |a krzo 
ORI |a SA-MARC-krimdoka001.raw