Predictive Power of Dynamic (vs. Static) Risk Factors in the Finnish Risk and Needs Assessment Form

We estimated the predictive power of the dynamic items in the Finnish Risk and Needs Assessment Form (Riski- ja tarvearvio [RITA]), assessed by caseworkers, for predicting recidivism. These 52 items were compared to static predictors including crime(s) committed, prison history, and age. We used two...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autores principales: Salo, Benny (Autor) ; Laaksonen, Toni (Autor) ; Santtila, Pekka (Autor)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2019
En: Criminal justice and behavior
Año: 2019, Volumen: 46, Número: 7, Páginas: 939-960
Acceso en línea: Volltext (Resolving-System)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000caa a22000002c 4500
001 1703408691
003 DE-627
005 20250804150304.0
007 cr uuu---uuuuu
008 200703s2019 xx |||||o 00| ||eng c
024 7 |a 10.1177/0093854819848793  |2 doi 
035 |a (DE-627)1703408691 
035 |a (DE-599)KXP1703408691 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Salo, Benny  |e VerfasserIn  |4 aut 
245 1 0 |a Predictive Power of Dynamic (vs. Static) Risk Factors in the Finnish Risk and Needs Assessment Form  |c Benny Salo, Toni Laaksonen, and Pekka Santtila 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We estimated the predictive power of the dynamic items in the Finnish Risk and Needs Assessment Form (Riski- ja tarvearvio [RITA]), assessed by caseworkers, for predicting recidivism. These 52 items were compared to static predictors including crime(s) committed, prison history, and age. We used two machine learning methods (elastic net and random forest) for this purpose and compared them with logistic regression. Participants were 746 men who had and 746 who had not reoffended during matched follow-up periods from 0.5 to 5.8 years. Both RITA items and static predictors predicted general and violent recidivism well (area under the curve [AUC] = .74-.78), but to combine them increased discrimination only slightly over static predictors alone (ΔAUC = .01-.03). Calibration was good for all models. We argue that the results show strong potential for the RITA items, but that development is best focused on improving usability for identifying treatment targets and for updating risk assessments. 
700 1 |a Laaksonen, Toni  |e VerfasserIn  |4 aut 
700 1 |a Santtila, Pekka  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Criminal justice and behavior  |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1974  |g 46(2019), 7, Seite 939-960  |h Online-Ressource  |w (DE-627)306656345  |w (DE-600)1500128-3  |w (DE-576)081985487  |x 1552-3594  |7 nnas 
773 1 8 |g volume:46  |g year:2019  |g number:7  |g pages:939-960 
856 4 0 |u https://doi.org/10.1177/0093854819848793  |x Resolving-System  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 3695055731 
LOK |0 003 DE-627 
LOK |0 004 1703408691 
LOK |0 005 20200703075204 
LOK |0 008 200703||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n 
LOK |0 689   |a s  |a Risk and needs assessment 
LOK |0 689   |a s  |a Dynamic risk factors 
LOK |0 689   |a s  |a Recidivism 
LOK |0 689   |a s  |a Machine learning 
LOK |0 689   |a s  |a RITA 
LOK |0 689   |a g  |a Finland 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krub  |a krzo 
ORI |a WA-MARC-krimdoka001.raw