Assessing Associations Between Changes in Risk and Subsequent Reoffending: An Introduction to Relevant Statistical Models
Research on recidivism prediction has made important advances, but the same cannot be said of research assessing relationships between risk changes over time or after treatment and subsequent reoffending. In realistic criminal justice situations, data linking changes in risk to recidivism are often...
Autor principal: | |
---|---|
Otros Autores: | ; ; ; |
Tipo de documento: | Electrónico Artículo |
Lenguaje: | Inglés |
Publicado: |
[2017]
|
En: |
Criminal justice and behavior
Año: 2017, Volumen: 44, Número: 1, Páginas: 59-84 |
Acceso en línea: |
Presumably Free Access Volltext (Resolving-System) |
Journals Online & Print: | |
Verificar disponibilidad: | HBZ Gateway |
Palabras clave: |
MARC
LEADER | 00000naa a22000002c 4500 | ||
---|---|---|---|
001 | 1700557327 | ||
003 | DE-627 | ||
005 | 20200615083100.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200615s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1177/0093854816678648 |2 doi | |
035 | |a (DE-627)1700557327 | ||
035 | |a (DE-599)KXP1700557327 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Yang, Min |e VerfasserIn |4 aut | |
245 | 1 | 0 | |a Assessing Associations Between Changes in Risk and Subsequent Reoffending |b An Introduction to Relevant Statistical Models |
264 | 1 | |c [2017] | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Research on recidivism prediction has made important advances, but the same cannot be said of research assessing relationships between risk changes over time or after treatment and subsequent reoffending. In realistic criminal justice situations, data linking changes in risk to recidivism are often fraught with problems due to missing data, irregular intervals in repeat risk assessments, and individual differences such as age and risk levels. Traditional statistical methodologies such as ANCOVA for repeated measures are not suited for analyzing data with these features. We presented four types of statistical modeling techniques that can effectively accommodate these noisier data: conventional regression, conditional regression, two-stage, and joint models. The two-stage models consist of multilevel growth model and conventional regression. The joint models refer to structural equational models. Two example data sets were used to illustrate the application of these methodologies. | ||
700 | 1 | |a Polaschek, Devon L. L. |e VerfasserIn |0 (DE-588)1076298621 |0 (DE-627)834633442 |0 (DE-576)189549149 |4 aut | |
700 | 1 | |a Guo, Boliang |e VerfasserIn |4 aut | |
700 | 1 | |a Olver, Mark E. |e VerfasserIn |4 aut | |
700 | 1 | |a Wong, Stephen C. P. |e VerfasserIn |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Criminal justice and behavior |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1974 |g 44(2017), 1, Seite 59-84 |h Online-Ressource |w (DE-627)306656345 |w (DE-600)1500128-3 |w (DE-576)081985487 |x 1552-3594 |7 nnas |
773 | 1 | 8 | |g volume:44 |g year:2017 |g number:1 |g pages:59-84 |
856 | |u https://journals.sagepub.com/doi/pdf/10.1177/0093854816678648 |x unpaywall |z Vermutlich kostenfreier Zugang |h publisher [open (via free pdf)] | ||
856 | 4 | 0 | |u http://dx.doi.org/10.1177/0093854816678648 |x Resolving-System |3 Volltext |
951 | |a AR | ||
ELC | |a 1 | ||
LOK | |0 000 xxxxxcx a22 zn 4500 | ||
LOK | |0 001 368723889X | ||
LOK | |0 003 DE-627 | ||
LOK | |0 004 1700557327 | ||
LOK | |0 005 20200615083100 | ||
LOK | |0 008 200615||||||||||||||||ger||||||| | ||
LOK | |0 040 |a DE-21-110 |c DE-627 |d DE-21-110 | ||
LOK | |0 092 |o n | ||
LOK | |0 689 |a s |a Risk changes | ||
LOK | |0 689 |a s |a Recidivism | ||
LOK | |0 689 |a s |a Prediction | ||
LOK | |0 689 |a s |a Multilevel models | ||
LOK | |0 689 |a s |a Joint models | ||
LOK | |0 852 |a DE-21-110 | ||
LOK | |0 852 1 |9 00 | ||
LOK | |0 935 |a krub |a krzo | ||
OAS | |a 1 | ||
ORI | |a SA-MARC-krimdoka001.raw |