Assessing Associations Between Changes in Risk and Subsequent Reoffending: An Introduction to Relevant Statistical Models

Research on recidivism prediction has made important advances, but the same cannot be said of research assessing relationships between risk changes over time or after treatment and subsequent reoffending. In realistic criminal justice situations, data linking changes in risk to recidivism are often...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Yang, Min (Autor)
Otros Autores: Polaschek, Devon L. L. ; Guo, Boliang ; Olver, Mark E. ; Wong, Stephen C. P.
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: [2017]
En: Criminal justice and behavior
Año: 2017, Volumen: 44, Número: 1, Páginas: 59-84
Acceso en línea: Presumably Free Access
Volltext (Resolving-System)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:

MARC

LEADER 00000naa a22000002c 4500
001 1700557327
003 DE-627
005 20200615083100.0
007 cr uuu---uuuuu
008 200615s2017 xx |||||o 00| ||eng c
024 7 |a 10.1177/0093854816678648  |2 doi 
035 |a (DE-627)1700557327 
035 |a (DE-599)KXP1700557327 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
100 1 |a Yang, Min  |e VerfasserIn  |4 aut 
245 1 0 |a Assessing Associations Between Changes in Risk and Subsequent Reoffending  |b An Introduction to Relevant Statistical Models 
264 1 |c [2017] 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Research on recidivism prediction has made important advances, but the same cannot be said of research assessing relationships between risk changes over time or after treatment and subsequent reoffending. In realistic criminal justice situations, data linking changes in risk to recidivism are often fraught with problems due to missing data, irregular intervals in repeat risk assessments, and individual differences such as age and risk levels. Traditional statistical methodologies such as ANCOVA for repeated measures are not suited for analyzing data with these features. We presented four types of statistical modeling techniques that can effectively accommodate these noisier data: conventional regression, conditional regression, two-stage, and joint models. The two-stage models consist of multilevel growth model and conventional regression. The joint models refer to structural equational models. Two example data sets were used to illustrate the application of these methodologies. 
700 1 |a Polaschek, Devon L. L.  |e VerfasserIn  |0 (DE-588)1076298621  |0 (DE-627)834633442  |0 (DE-576)189549149  |4 aut 
700 1 |a Guo, Boliang  |e VerfasserIn  |4 aut 
700 1 |a Olver, Mark E.  |e VerfasserIn  |4 aut 
700 1 |a Wong, Stephen C. P.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Criminal justice and behavior  |d Thousand Oaks, Calif. [u.a.] : Sage Publications, 1974  |g 44(2017), 1, Seite 59-84  |h Online-Ressource  |w (DE-627)306656345  |w (DE-600)1500128-3  |w (DE-576)081985487  |x 1552-3594  |7 nnas 
773 1 8 |g volume:44  |g year:2017  |g number:1  |g pages:59-84 
856 |u https://journals.sagepub.com/doi/pdf/10.1177/0093854816678648  |x unpaywall  |z Vermutlich kostenfreier Zugang  |h publisher [open (via free pdf)] 
856 4 0 |u http://dx.doi.org/10.1177/0093854816678648  |x Resolving-System  |3 Volltext 
951 |a AR 
ELC |a 1 
LOK |0 000 xxxxxcx a22 zn 4500 
LOK |0 001 368723889X 
LOK |0 003 DE-627 
LOK |0 004 1700557327 
LOK |0 005 20200615083100 
LOK |0 008 200615||||||||||||||||ger||||||| 
LOK |0 040   |a DE-21-110  |c DE-627  |d DE-21-110 
LOK |0 092   |o n 
LOK |0 689   |a s  |a Risk changes 
LOK |0 689   |a s  |a Recidivism 
LOK |0 689   |a s  |a Prediction 
LOK |0 689   |a s  |a Multilevel models 
LOK |0 689   |a s  |a Joint models 
LOK |0 852   |a DE-21-110 
LOK |0 852 1  |9 00 
LOK |0 935   |a krub  |a krzo 
OAS |a 1 
ORI |a SA-MARC-krimdoka001.raw