Utilizing alternate models for analyzing count outcomes

Although ordinary least squares (OLS) regression was once a common tool for modeling discrete count outcomes in criminology and criminal justice, the past several decades have seen an increasing reliance on regression techniques specifically designed for such purposes. Utilizing a practical example...

Ausführliche Beschreibung

Gespeichert in:  
Bibliographische Detailangaben
1. VerfasserIn: Rydberg, Jason (VerfasserIn)
Beteiligte: Carkin, Danielle Marie (BeteiligteR)
Medienart: Elektronisch Aufsatz
Sprache:Englisch
Veröffentlicht: 2017
In: Crime & delinquency
Jahr: 2017, Band: 63, Heft: 1, Seiten: 61-76
Online-Zugang: Volltext (Resolving-System)
Journals Online & Print:
Lade...
Verfügbarkeit prüfen: HBZ Gateway
Schlagwörter:
Beschreibung
Zusammenfassung:Although ordinary least squares (OLS) regression was once a common tool for modeling discrete count outcomes in criminology and criminal justice, the past several decades have seen an increasing reliance on regression techniques specifically designed for such purposes. Utilizing a practical example from the 1958 Philadelphia Birth Cohort, this article describes and compares various estimation strategies for modeling such outcome variables, including a discussion of the inappropriateness of OLS for such purposes and specific features of discrete count distributions that complicate statistical inference—overdispersion, non-independence, and excess zeros. Practical advice for selecting an appropriate modeling strategy is offered.
ISSN:1552-387X
DOI:10.1177/0011128716678848