Utilizing alternate models for analyzing count outcomes

Although ordinary least squares (OLS) regression was once a common tool for modeling discrete count outcomes in criminology and criminal justice, the past several decades have seen an increasing reliance on regression techniques specifically designed for such purposes. Utilizing a practical example...

Descripción completa

Guardado en:  
Detalles Bibliográficos
Autor principal: Rydberg, Jason (Autor)
Otros Autores: Carkin, Danielle Marie (Otro)
Tipo de documento: Electrónico Artículo
Lenguaje:Inglés
Publicado: 2017
En: Crime & delinquency
Año: 2017, Volumen: 63, Número: 1, Páginas: 61-76
Acceso en línea: Volltext (Resolving-System)
Journals Online & Print:
Gargar...
Verificar disponibilidad: HBZ Gateway
Palabras clave:
Descripción
Sumario:Although ordinary least squares (OLS) regression was once a common tool for modeling discrete count outcomes in criminology and criminal justice, the past several decades have seen an increasing reliance on regression techniques specifically designed for such purposes. Utilizing a practical example from the 1958 Philadelphia Birth Cohort, this article describes and compares various estimation strategies for modeling such outcome variables, including a discussion of the inappropriateness of OLS for such purposes and specific features of discrete count distributions that complicate statistical inference—overdispersion, non-independence, and excess zeros. Practical advice for selecting an appropriate modeling strategy is offered.
ISSN:1552-387X
DOI:10.1177/0011128716678848