Cernat, Alexandru ca. 20/21. Jhr.

Occupation: Statistiker / Hochschullehrer
Corporate Relations: University of Manchester
Geographical Relations: Wirkungsort: Manchester
Country: United Kingdom (XA-GB)
Biographical References: GND (1234247712)
Internet: https://www.research.manchester.ac.uk/portal/alexandru.cernat.html (Stand: 28.05.2021)

Newest Titles (by)

see all (3)

Related Authors

  • Brunton-Smith, Ian
  • Buil-Gil, David
  • Pina-Sánchez, Jose
  • Moretti, Angelo 1978-

see all (4)

Publication Timeline

Details

-

MARC

LEADER 00000cz a2200000n 4500
001 1759098205
003 DE-627
005 20221101211812.0
008 210528n||aznnnabbn | aaa |c
024 7 |a http://d-nb.info/gnd/1234247712  |2 uri 
035 |a (DE-588)1234247712 
035 |a (DE-627)1759098205 
040 |a DE-627  |b ger  |c DE-627  |e rda 
043 |c XA-GB 
079 |a g  |b p  |c v  |q f  |v piz 
100 1 |a Cernat, Alexandru  |d ca. 20/21. Jhr. 
375 |a 1  |2 iso5218 
510 2 |0 (DE-627)477141706  |0 (DE-576)200137794  |0 (DE-588)6036820-2  |a University of Manchester  |4 affi  |w r  |i Affiliation  |e Affiliation 
548 |a ca. 20/21. Jhr.  |4 datl  |w r  |i Lebensdaten 
550 |0 (DE-627)105306487  |0 (DE-576)21001511X  |0 (DE-588)4182956-6  |a Statistiker  |4 berc  |w r  |i Charakteristischer Beruf 
550 |0 (DE-627)106294369  |0 (DE-576)208959793  |0 (DE-588)4025243-7  |a Hochschullehrer  |4 beru  |w r  |i Beruf 
551 |0 (DE-627)106238337  |0 (DE-576)209023309  |0 (DE-588)4037286-8  |a Manchester  |4 ortw  |w r  |i Wirkungsort 
670 |a Internet: https://www.research.manchester.ac.uk/portal/alexandru.cernat.html (Stand: 28.05.2021) 
678 |b Biography: Alexandru Cernat joined Social Statistics in July 2016. Prior to this he was a Research Associate at the National Centre for Research Methods. Reseach interests: An important part of his research is centred around modelling measurement error in the framework of generalized latent variables (i.e., Structural Equation Modelling, Latent Class and Item Response Theory) with a particular interest in applying these to longitudinal data. These statistical models are often used in the context of survey methodology to investigate topics such as: measurement error, non-response, mixed mode designs, longitudinal surveys, paradata, interviewer effects, surveying sensitive topics, etc. Another research area of interest is missing data and ways to correct for this. This work focuses especially on missing biomarkers in surveys and is part of the National Centre for Research Methods grant: Acounting for informative item nonresponse in biomarkers collected in longitudinal surveys (WP3). 
692 |a Measurement error in longitudinal data 
ORI |a WA-MARC-krimdokc001.raw 
SUB |a KRI  |b 3